Biological treatment processes are probably important for preventing the proliferation of steroidal compounds in the environment, and a growing number of reports suggest that nitrification may play a role in removing these chemicals from wastewater. The link between nitrification and biotransformation of 17alpha-ethinylestradiol (EE2) was investigated using enriched cultures of autotrophic ammonia-oxidizers. Batch experiments showed that ring A of EE2 is the site of electrophilic initiating reactions, including conjugation and hydroxylation. Ring A was also cleaved before any of the other rings were broken, which is likely because the frontier electron density of the ring A carbon units is higher than those of rings B, C, or D. EE2 and NH3 were degraded in the presence of an ammonium monooxygenase (AMO) containing protein extract, and the reaction stoichiometry was consistent with a conceptual model involving a binuclear copper site located at the AMO active site. Continuous tests showed a linear relationship between nitrification and EE2 removal in enriched nitrifying cultures. Taken together, these results support the notion that EE2 biotransformation can be cometabolically mediated under operating conditions that allow for enrichment of nitrifiers.
Quorum quenching (QQ) has recently been acknowledged to be a sustainable antifouling strategy and has been investigated widely using lab-scale membrane bioreactor (MBR) systems. This study attempted to bring this QQ-MBR closer to potential practical application. Two types of pilot-scale QQ-MBRs with QQ bacteria entrapping beads (QQ-beads) were installed and run at a wastewater treatment plant, feeding real municipal wastewater to test the systems' effectiveness for membrane fouling control and thus the amount of energy savings, even under harsh environmental conditions. The rate of transmembrane pressure (TMP) build-up was significantly mitigated in QQ-MBR compared to that in a conventional-MBR. Consequently, QQ-MBR can substantially reduce energy consumption by reducing coarse bubble aeration without compromising the effluent water quality. The addition of QQ-beads to a conventional MBR substantially affected the EPS concentrations, as well as microbial floc size in the mixed liquor. Furthermore, the QQ activity and mechanical stability of QQ-beads were well maintained for at least four months, indicating QQ-MBR has good potential for practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.