In order to determine the characteristics of peristaltic transport of magnetohydrodynamic flow through a porous medium, the motion of a hydromagnetic (electrically conducting), viscous, and incompressible fluid in planer channel filled with a homogeneous porous medium and having electrically insulated walls that are transversely displaced by an infinite, harmonic travelling wave of large wavelength was analyzed using a perturbation expansion in terms of a variant wave number. We obtain an explicit form for the velocity field, a relation between the pressure rise and flow rate, in terms of Reynolds number, wave number, Hartmann number, permeability parameter, and the occlusion. The effects of all parameters of the problem are numerically discussed and graphically explained
The current analysis aims to exhibit the nanoparticles of Al2O3 + Cu-water hybrid nanofluid flow for Darcy–Forchheimer with heterogeneous–homogeneous chemical reactions and magnetic field aspects past a stretching or shrinking cylinder with Joule heating. This paper performed not only with the hybrid nanofluid but also the shape of Al2O3 and Cu nanoparticles. The model of single-phase hybrid nanofluid due to thermophysical features is utilized for the mathematical formulation. In the present exploration equal diffusions factors for reactants and auto catalyst are instituted. The system of governing equations has been simplified by invoking the similarity transformation. The numerical computations are invoked due to the function bvp4c of Matlab, with high non-linearity. Numerical outcomes illustrated that; sphere shape nanoparticles presented dramatic performance on heat transfer of hybrid nanofluid movement; an opposite behavior is noticed with lamina shape. The local Nusselt number strengthens as the transverse curvature factor becomes larger. In addition, the homogeneous–heterogeneous reactions factors lead to weaken concentration fluctuation.
The two-dimensional magnetohydrodynamics incompressible flow of nanofluid about a stretching surface is investigated with the existence of viscous dissipation and Joule heating. Moreover, the impact of the convective condition and mass suction is applied with the viscous nanofluid containing copper nanoparticles and the base fluid water. The similarity variables have been employed to transform the coupled nonlinear partial differential equations into the ordinary differential equations and the numerical scheme bp4c is implemented for the further analysis of the solution. The diverse results of temperature, skin friction coefficient, velocity, and the Nusselt number according to numerous parameters have been shown graphically. It appears that the Nusselt number and the skin friction reduces, which is caused by the enhancement of both Hartman number and nanoparticles concentration. Moreover, the fluid temperature surges with the growth of Biot number, and Eckert number whereas the growth of nanoparticles concentration and suction parameter diminishes the velocity and temperature profile. The inclusion of a significant quantity of nanoparticles in the base fluid increases the density of the corresponding nanofluids and accordingly the temperature of the coupled nanoparticles in the base fluids can be modified. Hence, nanofluids build an outstanding performance in electronic components appliances and other electrical devices. The existing research is further effective in refrigerators for stabilizing their rate of cooling.
The performance of nanofluid in the heat transport phenomena showed satisfactory results, which have been considered by scientists and researchers. The dispersion of two nanoparticles to form a mixture which named as hybrid nanofluid. It has been proved experimentally that hybrid nanofluid has good thermal performance compared to unitary nanofluid. The present study inspected the convective flow of a Williamson hybrid nanofluid through a cone and wedge in a porous medium of different shapes of nanoparticles (cylindrical‐, spherical‐, blades‐, platelets‐, bricks‐) under the influence of a magnetic field. The partial differential equations were converted to an ordinary differential equation and the resulting equations were solved using the bvp4c MATLAB code. The effect of some important physical parameters on both the velocity and temperature profile was graphically plotted and the effect of the shape and size of nanoparticles was discussed, the numerical values of the friction coefficient and Nusselt number were obtained. As observed, the friction factor of Ag–TiO2–H2O hybrid nanofluid was more than that of TiO2–H2O nanofluid. A significant enhancement in bulk temperature is seen for the Ag–TiO2 hybrid and nanofluid formed by blade‐shaped nanoparticles followed by cylindrical, platelet, brick, and spherical nanoparticles. In addition, for a 5% volume fraction of using blade nanoparticles shape givean increase in skin friction factor about 4.8% compared tobrick hybrid nanoparticles. A comparative study of different forms for Ag‐TiO2was presented graphically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.