Toxoplasmosis constitutes a global infection caused by oblige intracellular apicomplexan protozoan parasite Toxoplasma gondii. Although often asymptomatic, infection can result in more severe, potentially life threatening symptoms particularly in immunocompromised individuals. The present study evaluated the anti-Toxoplasma effects in experimental animals of silver nanoparticles synthesized in combination with extracts of natural plants (Phoenix dactylifera and Ziziphus spina-christi) as an alternative method to standard sulfadiazine drug therapy. Liver functions estimated by and AST and ALT were significantly increased in T. gondii-infected mice compared with the control group as well as hepatic nitric oxide (NO), lipid peroxidation (LPO) levels and caused significant decrease in superoxide dismutase (SOD), catalase (CAT) and glutathione activities in the liver homogenates. Nanoparticles pretreatment prevented liver damage as determined by enzyme activity inhibition, in addition to significant inhibition of hepatic NO levels and significant elevation in liver SOD and CAT activities. Moreover, nanoparticle treatment significantly decreased hepatic LPO and NO concentrations and proinflammatory cytokines but significantly boosted the antioxidant enzyme activity of liver homogenate. In addition, histological examinations showed distinct alterations in the infected compared with untreated control groups. Conversely, nanoparticles pretreatment showed improvement in the histological features indicated by slight infiltration and fibrosis, minimal pleomorphism and less hepatocyte and degeneration. Furthermore, nanoparticles treatment induced a reduction in immunoreactivity to TGF-β and NF-κB in hepatic tissues. Therefore, the present study provides new insights into various natural plants that are used traditionally for the treatment of toxoplasmosis and other parasitic infections, which may be useful as alternative treatment option for T. gondii infections.
One of the most crucial approaches for treating human diseases, particularly parasite infections, is nanomedicine. One of the most significant protozoan diseases that impact farm and domestic animals is coccidiosis. While, amprolium is one of the traditional anticoccidial medication, the advent of drug-resistant strains of Eimeria necessitates the development of novel treatments. The goal of the current investigation was to determine whether biosynthesized selenium nanoparticles (Bio-SeNPs) using Azadirachta indica leaves extract might treat mice with Eimeria papillata infection in the jejunal tissue. Five groups of seven mice each were used, as follows: Group 1: Non-infected-non-treated (negative control). Group 2: Non-infected treated group with Bio-SeNPs (0.5 mg/kg of body weight). Groups 3-5 were orally inoculated with 1×103 sporulated oocysts of E. papillata. Group 3: Infected-non-treated (positive control). Group 4: Infected and treated group with Bio-SeNPs (0.5 mg/kg). Group 5: Infected and treated group with the Amprolium. Groups 4 and 5 daily received oral administration (for 5 days) of Bio-SeNPs and anticoccidial medication, respectively, after infection. Bio-SeNPs caused a considerable reduction in oocyst output in mice feces (97.21%). This was also accompanied by a significant reduction in the number of developmental parasitic stages in the jejunal tissues. Glutathione reduced (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels were dramatically reduced by the Eimeria parasite, whereas, nitric oxide (NO) and malonaldehyde (MDA) levels were markedly elevated. The amount of goblet cells and MUC2 gene expression were used as apoptotic indicators, and both were considerably downregulated by infection. However, infection markedly increased the expression of inflammatory cytokines (IL-6 and TNF-α) and the apoptotic genes (Caspase-3 and BCL2). Bio-SeNPs were administrated to mice to drastically lower body weight, oxidative stress, and inflammatory and apoptotic indicators in the jejunal tissue. Our research thus showed the involvement of Bio-SeNPs in protecting mice with E. papillata infections against jejunal damage.
Herbal extracts are promising agents against various parasitic diseases, such as malaria. This study aimed to evaluate the ameliorative action of Eucalyptus camaldulensis extract (ECE) against hepatic damage caused by Plasmodium chabaudi infection. Mice were allocated into five groups as follows: two groups served as the control non-infected groups that received distilled water and ECE, respectively; subsequent three groups were infected with 106 P. chabaudi parasitized erythrocytes; the last two groups were infected with the parasite and then treated with ECE and chloroquine. On day 8 post-infection, the parasite count increased inside erythrocytes (59.4% parasitemia in the infected group). Parasitemia was successfully reduced to 9.4% upon ECE treatment. Phytochemical screening using GC mass spectrometry revealed that ECE contained 23 phytochemical components. Total phenolics and flavonoids in ECE were 104 ± 2 and 7.1± 3 µg/mL, respectively, with 57.2% antioxidant activity. ECE ameliorated changes in liver histopathology and enzymatic activity of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase. In addition, ECE prevented oxidative damage induced by the parasite in the liver, as evidenced by the change in the liver concentrations of glutathione, nitric oxide, malondialdehyde, and catalase. Moreover, ECE was able to regulate the expression of liver cytokines, interleukins-1β and 6, as well as IFN-γ mRNA. ECE possesses antiplasmodial, antioxidant, and anti-inflammatory activity against liver injury induced by the parasite P. chabaudi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.