Oral candidiasis is a very common oral condition among susceptible individuals, with the main causative organism being the fungus Candida albicans . Current drug delivery systems to the oral mucosa are often ineffective because of short drug/tissue contact times as well as increased prevalence of drug-resistant Candida strains. We evaluated the potency of saturated fatty acids as antifungal agents and investigated their delivery by novel electrospun mucoadhesive oral patches using agar disk diffusion and biofilm assays. Octanoic (C8) and nonanoic (C9) acids were the most effective at inhibiting C. albicans growth on disk diffusion assays, both in solution or when released from polycaprolactone (PCL) or polyvinylpyrrolidone/RS100 (PVP/RS100) electrospun patches. In contrast, dodecanoic acid (C12) displayed the most potent antifungal activity against pre-existing C. albicans biofilms in solution or when released by PCL or PVP/RS100 patches. Both free and patch-released saturated fatty acids displayed a significant toxicity to wild-type and azole-resistant strains of C. albicans . These data not only provide evidence that certain saturated fatty acids have the potential to be used as antifungal agents but also demonstrate that this therapy could be delivered directly to Candida -infected sites using electrospun mucoadhesive patches, demonstrating a potential new therapeutic approach to treat oral thrush.
Restoring subgingival class-V cavities successfully, demand special biological properties from a restorative material. This study aimed to assess the effects of incorporating bioactive materials to glass ionomer cement (GIC) on its mechanical and biological properties. Hydroxyapatite, chitosan, chondroitin sulphate, bioglass, gelatine and processed bovine dentin were incorporated into a GIC restorative material. Compressive strength, biaxial flexural strength (BFS), hardness, setting and working time measurements were investigated. Biocompatibility of the new materials was assessed using both monolayer cell cultures of normal oral fibroblasts (NOF) and TR146 keratinocytes, and a 3D-tissue engineered human oral mucosa model (3D-OMM) using presto-blue tissue viability assay and histological examination. Significant reduction in the compressive strength and BFS of gelatine-modified discs was observed, while chondroitin sulphate-modified discs had reduced BFS only (p value > 0.05). For hardness, working and setting times, only bioglass caused significant increase in the working time. NOF viability was significantly increased when exposed to GIC-modified with bovine dentine, bioglass and chitosan. Histological examination showed curling and growth of the epithelial layer toward the disc space, except for the GIC modified with gelatine. This study has highlighted the potential for clinical application of the modified GICs with hydroxyapatite, chitosan, bioglass and bovine dentine in subgingival class-V restorations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.