In this review article, some key challenges in drug delivery are first introduced and methods that have been applied in attempts to solve them enumerated. Particularly intractable problems are highlighted: these include issues of solubility, targeting and drug degradation. The technique of electrospinning is subsequently introduced, and the influence of processing parameters on the fibers produced discussed. The potential of electrospun nanofibers in drug delivery is then explored, with examples given from the recent literature to illustrate how fibers can be used to overcome hurdles in drug solubility, degradation and targeting. Future perspectives and challenges are also considered.
In this paper, we propose an efficient numerical scheme for the approximate solution of a time fractional diffusion-wave equation with reaction term based on cubic trigonometric basis functions. The time fractional derivative is approximated by the usual finite difference formulation, and the derivative in space is discretized using cubic trigonometric B-spline functions. A stability analysis of the scheme is conducted to confirm that the scheme does not amplify errors. Computational experiments are also performed to further establish the accuracy and validity of the proposed scheme. The results obtained are compared with finite difference schemes based on the Hermite formula and radial basis functions. It is found that our numerical approach performs superior to the existing methods due to its simple implementation, straightforward interpolation and very low computational cost. A convergence analysis of the scheme is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.