We have identified a neuronal-restricted precursor (NRP) cell that expresses E-NCAM (high polysialic-acid NCAM) and is morphologically distinct from multipotent neuroepithelial (NEP) cells (Kalyani et al., 1997) and spinal glial progenitors (Rao and Mayer-Proschel, 1997). NRP cells self renew over multiple passages in the presence of fibroblast growth factor (FGF) and neurotrophin-3 (NT-3) and differentiate in the presence of retinoic acid and the absence of FGF into postmitotic neurons. NRP cells can also be generated from multipotent E10.5 NEP cells. Clonal analysis shows that NRP cells arise from a NEP progenitor that generates other restricted CNS precursors. The NEP-derived NRPs undergo self renewal and can differentiate into multiple neuronal phenotypes. Thus, a direct lineal relationship exists between multipotential NEP cells and more restricted neuronal precursor cells present in vivo at E13.5 in the spinal cord.
Cultured spinal cord neuroepithelial (NEP) cells can differentiate into neurons, oligodendrocytes and astrocytes and are morphologically and antigenically distinct from neural crest stem cells (NCSCs) that generate the PNS. NEP cells, however, can generate p75/nestin-immunoreactive cells that are morphologically and antigenically similar to previously characterized NCSCs. NEP-derived p75-immunoreactive cells differentiate into peripheral neurons, smooth muscle, and Schwann cells in mass and clonal culture. Clonal analysis of NEP cells demonstrates that a common NEP progenitor cell generated both CNS and PNS phenotypes. Differentiation into NCSCs was promoted by BMP-2/4 and differentiation did not require cells to divide, indicating that BMP played an instructive role in the differentiation process. Thus, individual NEP cells are multipotent and can differentiate into most major types of cell in the CNS and PNS and that PNS differentiation involves a transition from a NEP stem to another more limited, p75-immunoreactive, neural crest stem cell.
Neuronal restricted precursors (NRPs) () can generate multiple neurotransmitter phenotypes during maturation in culture. Undifferentiated E-NCAM+ (embryonic neural cell adhesion molecule) immunoreactive NRPs are mitotically active and electrically immature, and they express only a subset of neuronal markers. Fully mature cells are postmitotic, process-bearing cells that are neurofilament-M and synaptophysin immunoreactive, and they synthesize and respond to different subsets of neurotransmitter molecules. Mature neurons that synthesize and respond to glycine, glutamate, GABA, dopamine, and acetylcholine can be identified by immunocytochemistry, RT-PCR, and calcium imaging in mass cultures. Individual NRPs also generate heterogeneous progeny as assessed by neurotransmitter response and synthesis, demonstrating the multipotent nature of the precursor cells. Differentiation can be modulated by sonic hedgehog (Shh) and bone morphogenetic protein (BMP)-2/4 molecules. Shh acts as a mitogen and inhibits differentiation (including cholinergic differentiation). BMP-2 and BMP-4, in contrast, inhibit cell division and promote differentiation (including cholinergic differentiation). Thus, a single neuronal precursor cell can differentiate into multiple classes of neurons, and this differentiation can be modulated by environmental signals.
We have previously identified multipotent neuroepithelial (NEP) stem cells and lineage-restricted, self-renewing precursor cells termed NRPs (neuron-restricted precursors) and GRPs (glial-restricted precursors) present in the developing rat spinal cord (A. Kalyani, K. Hobson, and M. S. Rao, 1997, Dev. Biol. 186, 202-223; M. S. Rao and M. Mayer-Proschel, 1997, Dev. Biol. 188, 48-63; M. Mayer-Proschel, A. J. Kalyani, T. Mujtaba, and M. S. Rao, 1997, Neuron 19, 773-785). We now show that cells identical to rat NEPs, NRPs, and GRPs are present in mouse neural tubes and that immunoselection against cell surface markers E-NCAM and A2B5 can be used to isolate NRPs and GRPs, respectively. Restricted precursors similar to NRPs and GRPs can also be isolated from mouse embryonic stem cells (ES cells). ES cell-derived NRPs are E-NCAM immunoreactive, undergo self-renewal in defined medium, and differentiate into multiple neuronal phenotypes in mass culture. ES cells also generate A2B5-immunoreactive cells that are similar to E9 NEP-cell-derived GRPs and can differentiate into oligodendrocytes and astrocytes. Thus, lineage restricted precursors can be generated in vitro from cultured ES cells and these restricted precursors resemble those derived from mouse neural tubes. These results demonstrate the utility of using ES cells as a source of late embryonic precursor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.