AI evolution is accelerating and Deep Neural Network (DNN) inference accelerators are at the forefront of ad hoc architectures that are evolving to support the immense throughput required for AI computation. However, much more energy efficient design paradigms are inevitable to realize the complete potential of AI evolution and curtail energy consumption. The Near-Threshold Computing (NTC) design paradigm can serve as the best candidate for providing the required energy efficiency. However, NTC operation is plagued with ample performance and reliability concerns arising from the timing errors. In this paper, we dive deep into DNN architecture to uncover some unique challenges and opportunities for operation in the NTC paradigm. By performing rigorous simulations in TPU systolic array, we reveal the severity of timing errors and its impact on inference accuracy at NTC. We analyze various attributes—such as data–delay relationship, delay disparity within arithmetic units, utilization pattern, hardware homogeneity, workload characteristics—and uncover unique localized and global techniques to deal with the timing errors in NTC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.