This paper presents the numerical study on two-dimensional forced convection heat transfer across three in-line flat tubes confined in a channel under incompressible, steady-state conditions. This system is solved in body-fitted coordinates (BFC) using the finite volume method (FVM). The constant heat flux is imposed on the surface of the tubes as the thermal boundary conditions. The range of the longitudinal pitch-todiameter ratio (S L /D s ) of 2.0-4.0 is considered, the Reynolds number varies within the range 25-300, and the Prandtl number is taken as 0.7. The temperature contours, local Nusselt number distributions at the tube surface and mean Nusselt number were analyzed. The strength of the heat transfer between the surface of the tubes and the air flow increases with an increase in Reynolds number and pitch-to-diameter ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.