The agonists of imidazoline I-1 receptors (I-1R) are widely used to lower blood pressure. It has been indicated that guanidinium derivatives show an ability to activate imidazoline receptors. Also, allantoin has a chemical stricture similar to guanidinium derivatives. Thus, it is of special interest to characterize the effect of allantoin on I-1R. In conscious male spontaneous hypertensive rats (SHRs), mean blood pressure (MBP) was recorded using the tail-cuff method. Furthermore, the hemodynamic analyses in catheterized rats were applied to measure the actions of allantoin in vivo. Allantoin decreased blood pressures in SHRs at 30 minutes, as the most effective time. Also, this antihypertensive action was shown in a dose-dependent manner from SHRs treated with allantoin. Moreover, in anesthetized rats, allantoin inhibited cardiac contractility and heart rate as showing in hemodynamic dP/dt max significantly. Also, the peripheral blood flow was markedly increased by allantoin. Both actions were diminished by efaroxan at the dose sufficient to block I-1R. Thus, we suggest that allantoin, as I-1R agonist, has the potential to develop as a new therapeutic agent for hypertension in the future.
Benzyl isothiocyanate (BITC), and phenethyl isothiocyanate (PEITC) have been demonstrated to induce anticancer function in many human cancer cells and also inhibit cancer cell migration and invasion. However, there are no studies that show BITC and PEITC to inhibit cell migration and invasion in mouse melanoma B16F10 cells. In this study, we investigated anti-metastasis effects of BITC and PEITC in melanoma cancer cells in vitro. Under sub-lethal concentrations (from 1, 2.5 up to 5 µM), BITC and PEITC significantly inhibited cell mobility, migration and invasion nature of B16F10 cells. Gelatin zymography assay also showed that BITC and PEITC inhibited matrix metalloproteinase-2 (MMP-2) activity in B16F10 cells. PEITC reduced MAPK signaling associated proteins such as p-ERK1/2, p-p38 and p-JNK1/2 but BITC increased those MAPK signaling associated proteins. BITC and PEITC both suppressed the expression of RhoA, Ras, and SOS-1, however, PEITC increased FAK and GRB2 but BITC increased FAK at 48 h. Furthermore, PEITC decreased the expression of MMP-2 and tissue inhibitors of matrix metalloproteinases (TIMP) but BITC increased them. PEITC inhibited NF-κB protein levels and DNA binding which was confirmed by electrophoretic mobility shift (EMSA) assay. Based on these observations, we suggest that BITC and PEITC can be used in anti-metastasis of melanoma cells in the future.
It has been indicated that activation of peripheral imidazoline I2-receptor (I-2R) may reduce the blood pressure in spontaneously hypertensive rats (SHRs). Also, guanidinium derivatives show the ability to activate imidazoline receptors. Thus, it is of special interest to characterize the I-2R using guanidinium derivatives in blood vessels for development of antihypertensive agent(s). Six guanidinium derivatives including agmatine, amiloride, aminoguanidine, allantoin, canavanine, and metformin were applied in this study. Western blot analysis was used for detecting the expression of imidazoline receptor in tissues of Wistar rats. The isometric tension of aortic rings isolated from male rats was also estimated. The expression of imidazoline receptor on rat aorta was identified. However, guanidinium derivatives for detection of aortic relaxation were not observed except agmatine and amiloride which induced a marked relaxation in isolated aortic rings precontracted with phenylephrine or KCl. Both relaxations induced by agmatine and amiloride were attenuated by glibenclamide at concentration enough to block ATP-sensitive potassium (KATP) channels. Meanwhile, only agmatine-induced relaxation was abolished by BU224, a selective antagonist of imidazoline I2-receptors. Taken together, we suggest that agmatine can induce vascular relaxation through activation of peripheral imidazoline I2-receptor to open KATP channels. Thus, agmatine-like compound has the potential to develop as a new therapeutic agent for hypertension in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.