Direct and simultaneous measurements of the normal and lateral forces encountered by a nanosize spherical silicon tip approaching a solid surface in purified water are reported. For tip-surface distances, 0 ± 0.03 nm Ͻ d Ͻ 2 nm, experiments and grand canonical molecular-dynamics simulations find oscillatory solvation forces for hydrophilic surfaces, mica and glass, and less pronounced oscillations for a hydrophobic surface, graphite. The simulations reveal layering of the confined water density and the development of hexagonal order in layers proximal to a quartz surface. For subnanometer hydrophilic confinement, the lateral force measurements show orders of magnitude increase of the viscosity with respect to bulk water, agreeing with a simulated sharp decrease in the diffusion constant. No viscosity increase is observed for hydrophobic surfaces.
We report a nanolithography technique that allows simultaneous direct control of the local chemistry and topography of thin polymer films. Specifically, a heated atomic force microscope (AFM) tip can write sub-15 nm hydrophilic features onto a hydrophobic polymer at the rate of 1.4 mm per s. The thermally activated chemical reactions and topography changes depend on the chemical composition of the polymer, the raster speed, the temperature at the AFM tip/sample interface, and the normal load. This method is conceptually simple, direct, extremely rapid, achievable in a range of environments, and potentially adaptable to other materials systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.