Mutations in BRCA1 are associated with a high risk of breast and ovarian cancer. BRCA1 participates in the DNA damage response and acts as a ubiquitin ligase. However, its regulation remains poorly understood. Here we report that BRCA1 is modified by small ubiquitin-like modifier (SUMO) in response to genotoxic stress, and co-localizes at sites of DNA damage with SUMO1, SUMO2/3 and the SUMO-conjugating enzyme Ubc9. PIAS SUMO E3 ligases co-localize with and modulate SUMO modification of BRCA1, and are required for BRCA1 ubiquitin ligase activity in cells. In vitro SUMO modification of the BRCA1/BARD1 heterodimer greatly increases its ligase activity, identifying it as a SUMO-regulated ubiquitin ligase (SRUbL). Further, PIAS SUMO ligases are required for complete accumulation of double-stranded DNA (dsDNA) damage-repair proteins subsequent to RNF8 accrual, and for proficient double-strand break repair. These data demonstrate that the SUMOylation pathway plays a significant role in mammalian DNA damage response.
Cofilin stimulates actin filament disassembly and accelerates actin filament turnover. Cofilin is also involved in stimulus-induced actin filament assembly during lamellipodium formation. However, it is not clear whether this occurs by replenishing the actin monomer pool, through filament disassembly, or by creating free barbed ends, through its severing activity. Using photoactivatable Dronpa-actin, we show that cofilin is involved in producing more than half of all cytoplasmic actin monomers and that the rate of actin monomer incorporation into the tip of the lamellipodium is dependent on the size of this actin monomer pool. Finally, in cofilin-depleted cells, stimulus-induced actin monomer incorporation at the cell periphery is attenuated, but the incorporation of microinjected actin monomers is not. We propose that cofilin contributes to stimulus-induced actin filament assembly and lamellipodium extension by supplying an abundant pool of cytoplasmic actin monomers.
We have developed a multitarget super-resolution microscopy technique called image reconstruction by integrating exchangeable single-molecule localization (IRIS). IRIS uses protein fragment-based probes that directly associate with and dissociate from their targets over durations on the order of tens of milliseconds. By integrating single-molecule localization and sequential labeling, IRIS enables unprecedented labeling density along multiple cellular structures. IRIS can be used to discern the area-specific proximity between cytoskeletal components and focal adhesions within a single cell.
This paper introduces a new, easy-to-use method of fluorescence single-molecule speckle microscopy for actin with nanometer-scale accuracy. This new method reveals that actin flows in front of mature focal adhesions (FAs) are fast and biased toward FAs, suggesting that mature FAs are actively engaged in pulling and remodeling the local actin network.
Background
The epidermal growth factor (EGF) stimulates rapid tyrosine phosphorylation of EGF-receptor (EGFR). This event precedes signalling from both the plasma membrane and from endosomes, and it is essential for recruitment of an ubiquitin ligase, CBL, that sorts activated receptors to endosomes and degradation. Because hyper-phosphorylation of EGFR is involved in oncogenic pathways, we performed an unbiased screen of siRNA oilgonucleotides targeting all human tyrosine phosphatases.
Results
We report the identification of PTPRK and PTPRJ (DEP-1) as EGFR-targeting phosphatases. DEP-1 is a tumour suppressor that dephosphorylates, thereby stabilizes EGFR by hampering its ability to associate with the CBL-GRB2 ubiquitin ligase complex. DEP-1 silencing enhanced tyrosine phosphorylation of endosomal EGFRs and, accordingly, increased cell proliferation. In line with functional interactions, EGFR and DEP-1 form physical associations, and EGFR phosphorylates a substrtae trapping mutant of DEP-1. Interestingly, the interactions of DEP-1 and EGFR are followed by physical segregation: whereas EGFR undergoes endocytosis, DEP-1 remains confined to the cell surface.
Conclusions
EGFR and DEP-1 physically interact at the cell surface and maitain bidirectional enzyme-substrate interactions, which are relevant to their respective oncogenic and tumor suppressive functions. These observations highlight the emerging roles of vesicular trafficking in malignant processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.