Simultaneously inducing preferred crystalline orientation with a strong piezoelectric response in polycrystalline aluminum nitride (AlN) thin films by atomic layer deposition is a technical challenge due to the upscaling of the integration of piezoelectric functionalities, such as sensing and actuation, in micro-devices without any poling process. Utilizing low-temperature plasma-enhanced atomic layer deposition (PE-ALD), highly c-axis-oriented AlN films have been prepared with precise control over the relative composition, purity levels, and chemical states of constituent elements. Tailoring thermodynamic parameters, such as the growth temperature and purging time after the trimethylaluminum precursor pulsing before the N2:H2:Ar plasma reaction, provide the possibility of modulating the texture coefficient and the relative piezoelectric response. The effective transverse piezoelectric e31,f coefficient of 0.37 C/m2 was achieved on the AlN film grown at 250 °C and 30 s with the highest texture coefficient TC(002) of 2.75 along the c-axis orientation. The process proposed, at a low temperature with the highly conformal growth of aluminum nitride thin films by PE-ALD, opens up pathways to design novel piezoelectric functional materials for micro-electro-mechanic system devices with complementary metal oxide semiconductor process temperature compatibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.