Automatic detection of intact tomatoes on plants is highly expected for low-cost and optimal management in tomato farming. Mature tomato detection has been wildly studied, while immature tomato detection, especially when occluded with leaves, is difficult to perform using traditional image analysis, which is more important for long-term yield prediction. Therefore, tomato detection that can generalize well in real tomato cultivation scenes and is robust to issues such as fruit occlusion and variable lighting conditions is highly desired. In this study, we build a tomato detection model to automatically detect intact green tomatoes regardless of occlusions or fruit growth stage using deep learning approaches. The tomato detection model used faster region-based convolutional neural network (R-CNN) with Resnet-101 and transfer learned from the Common Objects in Context (COCO) dataset. The detection on test dataset achieved high average precision of 87.83% (intersection over union ≥ 0.5) and showed a high accuracy of tomato counting (R2 = 0.87). In addition, all the detected boxes were merged into one image to compile the tomato location map and estimate their size along one row in the greenhouse. By tomato detection, counting, location and size estimation, this method shows great potential for ripeness and yield prediction.
BackgroundThere is a growing emphasis on the need to engage patients in order to improve the quality of health care and improve health outcomes. However, we are still lacking a comprehensive understanding on how different measures of patient experiences interact with one another or relate to health status. This study takes a network perspective to 1) study the associations between patient characteristics and patient experience in health care and 2) identify factors that could be prioritized to improve health status.MethodsThis study uses data from the two-year panels from the Medical Expenditure Panel Survey (MEPS) initiated between 2004 and 2011 in the United States. The 88 variables regarding patient health and experience with health care were identified through the MEPS documentation. Sex, age, race/ethnicity, and years of education were also included for analysis. The bnlearn package within R (v3.20) was used to 1) identify the structure of the network of variables, 2) assess the model fit of candidate algorithms, 3) cross-validate the network, and 4) fit conditional probabilities with the given structure.ResultsThere were 51,023 MEPS interviewees aged 18 to 85 years (mean = 44, 95% CI = 43.9 to 44.2), with years of education ranging from 1 to 19 (mean = 7.4, 95% CI = 7.40 to 7.46). Among all, 55% and 74% were female and white, respectively. There were nine networks identified and 17 variables not linked to others, including death in the second years, sex, entry years to the MEPS, and relations of proxies. The health status in the second years was directly linked to that in the first years. The health care ratings were associated with how often professionals listened to them and whether professionals’ explanation was understandable.ConclusionsIt is feasible to construct Bayesian networks with information on patient characteristics and experiences in health care. Network models help to identify significant predictors of health care quality ratings. With temporal relationships established, the structure of the variables can be meaningful for health policy researchers, who search for one or a few key priorities to initiate interventions or health care quality improvement programs.Electronic supplementary materialThe online version of this article (doi:10.1186/s12913-017-2496-5) contains supplementary material, which is available to authorized users.
Genomic selection (GS) has proven to be an efficient tool for predicting crop-rank performance of untested genotypes; however, when the traits have intermediate optima (phenology stages), this implementation might not be the most convenient. GS might deliver high-rank correlations but incurring in serious bias. Days to heading (DtH) is a crucial development stage in rice for regional adaptability with a significant impact on yield potential. The objective of this research consisted in develop a novel method that accurately predicts time-related traits such as DtH in unobserved environments. for this, we propose an implementation that incorporates day length information (DL) in the prediction process for two relevant scenarios: CV0, predicting tested genotypes in unobserved environments (C method); and CV00, predicting untested genotypes in unobserved environments (cB method). the use of DL has advantages over weather data since it can be determined in advance just by knowing the location and planting date. the proposed methods showed that DL information significantly helps to improve the predictive ability of DTH in unobserved environments. Under CV0, the C method returned a root-mean-square error (RMSE) of 3.9 days, a Pearson correlation (PC) of 0.98 and the differences between the predicted and observed environmental means (EMD) ranged between-4.95 and 4.67 days. For CV00, the CB method returned an RMSE of 7.3 days, a PC of 0.93 and the EMD ranged between-6.4 and 4.1 days while the conventional GS implementation produced an RMSE of 18.1 days, a PC of 0.41 and the EMD ranged between-31.5 and 28.7 days.
Accurate prediction of heading date under various environmental conditions is expected to facilitate the decision-making process in cultivation management and the breeding process of new cultivars adaptable to the environment. Days to heading (DTH) is a complex trait known to be controlled by multiple genes and genotype-by-environment interactions. Crop growth models (CGMs) have been widely used to predict the phenological development of a plant in an environment; however, they usually require substantial experimental data to calibrate the parameters of the model. The parameters are mostly genotype-specific and are thus usually estimated separately for each cultivar. We propose an integrated approach that links genotype marker data with the developmental genotype-specific parameters of CGMs with a machine learning model, and allows heading date prediction of a new genotype in a new environment. To estimate the parameters, we implemented a Bayesian approach with the advanced Markov chain Monte-Carlo algorithm called the differential evolution adaptive metropolis and conducted the estimation using a large amount of data on heading date and environmental variables. The data comprised sowing and heading dates of 112 cultivars/lines tested at 7 locations for 14 years and the corresponding environmental variables (day length and daily temperature). We compared the predictive accuracy of DTH between the proposed approach, a CGM, and a single machine learning model. The results showed that the extreme learning machine (one of the implemented machine learning models) was superior to the CGM for the prediction of a tested genotype in a tested location. The proposed approach outperformed the machine learning method in the prediction of an untested genotype in an untested location. We also evaluated the potential of the proposed approach in the prediction of the distribution of DTH in 103 F2 segregation populations derived from crosses between a common parent, Koshihikari, and 103 cultivars/lines. The results showed a high correlation coefficient (ca. 0.8) of the 10, 50, and 90th percentiles of the observed and predicted distribution of DTH. In this study, the integration of a machine learning model and a CGM was better able to predict the heading date of a new rice cultivar in an untested potential environment.
BackgroundPatient engagement helps to improve health outcomes and health care quality. However, the overall relationships among patient engagement measures and health outcomes remain unclear. This study aims to integrate expert knowledge and survey data for the identification of measures that have extensive associations with other variables and can be prioritized to engage patients.MethodsWe used the 2014 International Health Policy Survey (IHPS), which provided information on elder adults in 11 countries with details in patient characteristics, healthcare experiences, and patient-physician communication. Patient engagement or support was measured with eight variables including patients’ treatment choices, involvement, and treatment priority setting. Three types of care were identified: primary, specialist and chronic illness care. Specialists were doctors specializing in one area of health care. Chronic illness included eight chronic conditions surveyed. Expert knowledge was used to assist variable selection. We used Bayesian network models consisting of nodes that represented variables of interest and arcs that represented their relationships.ResultsAmong 25,530 participants, the mean age was 68.51 years and 57.40% were females. The distributions of age, sex, education, and patient engagement were significantly different across countries. For chronic illness care, written plans provided by professionals were linked to treatment feasibility and helpfulness. Whether professionals contacted patients was associated with the availability of professionals they could reach for chronic illness care. For specialist care, if specialists provided treatment choices, patients were more likely to be involved and discuss about what mattered to them.ConclusionThe strategies to engage patients may depend on the types of care, specialist or chronic illness care. For the study on the observational IHPS data, network modeling is useful to integrate expert knowledge. We suggest considering other theory-based patient engagement in major surveys, as well as engaging patients in their healthcare by providing written plans and actively communicating with patients for chronic illnesses, and encouraging specialists to discuss and provide treatment options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.