This work experimentally studied the formation process of the ramjet mode occurring in a cavity-based combustor operating at a high-enthalpy supersonic flow. The ramjet mode is featured by the phenomenon that the incoming supersonic inflow is decelerated to be subsonic before it enters the combustor, which is caused by the strong heat release under a high equivalence ratio. In the experiments, the ignition is performed after a steady fuel mass flow rate has been achieved. According to the flame behavior and the flowfield structure, the formation process of the ramjet mode can be divided into three stages, among which stage 1 (from ignition to the cavity shear-layer mode) is shortest, while stage 3 (from the lifted shear-layer mode to the ramjet mode) consumes the longest time. In stage 2, flashback occurs and shock–shock interactions are found to be strongly coupled with the local combustion which have an influence on the propagation velocity of the backpressure. A thickening boundary layer upstream of the separation shock is observed when the separation shock has interwoven with the jet-induced bow-shock. The thickening process could be extremely short (in 100 μs) before the thickened boundary layer separates, during which the propagation velocity of the backpressure can be apparently decelerated. The same phenomena shown in the supplementary experiments confirm that the thickening boundary layer and its deceleration effect on the propagation of the backpressure are not accidental but more likely to be inherent to the flashback occurring under a supersonic flow.
In accordance with high-speed schlieren results, the flow instabilities in the subsonic–supersonic mixing layer with a convective Mach number of 0.19 are investigated in detail. In the incipient stage of the mixing layer, wave structures caused by the pressure gradient affect the evolution of the Kelvin–Helmholtz vortexes. The dynamic mode decomposition (DMD) analysis reveals that the pressure gradient from the subsonic side to the supersonic side promotes flow instability. At this time, the Kelvin–Helmholtz vortexes mode is found to be dominant. A high temporal resolution is proven to play an important role in the DMD analysis to capture high-frequency modes.
To explain the phenomenon observed in previous experiments of kerosene-ignition failure in scramjet combustors as the kerosene temperature increases, we numerically investigate the mixing characteristics of a kerosene jet injected into a cavity-based supersonic combustor at different injection temperatures by using a compressible two-phase flow large-eddy simulation based on the Eulerian–Lagrangian approach. The results indicate that, upon injecting kerosene at high temperatures, the flow field preceding the leading edge of the cavity is similar to a typical gas jet in supersonic crossflow. The wall counter-rotating vortex pair (CVP) develops more fully and eventually becomes the main vortex pair. This evolution of the wall CVP modifies the cavity shear layer and alters the local flow-field characteristics near the cavity. Upon injecting kerosene at high temperatures, its evaporation rate increases sharply and the cavity recirculation zone enlarges, which causes more kerosene vapor to be entrained into the cavity. Because the kerosene-vapor temperature is lower than that of the low-speed fluid in the cavity, a significant amount of kerosene vapor entering the cavity not only makes the mass fraction of kerosene in the cavity exceed the fuel stoichiometric mass fraction but also reduces the temperature in the cavity, which negatively impacts the ignition process. The ignition delay time is much longer when the injection temperature is high, which is consistent with the inability of the initial flame kernel to form in the experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.