Recognition of food images is challenging due to their diversity and practical for health care on foods for people. In this paper, we propose an automatic food image recognition system for 85 food categories by fusing various kinds of image features including bag-of-features (BoF), color histogram, Gabor features and gradient histogram with Multiple Kernel Learning (MKL). In addition, we implemented a prototype system to recognize food images taken by cellularphone cameras. In the experiment, we have achieved the 62.52% classification rate for 85 food categories.
Since health care on foods is drawing people's attention recently, a system that can record everyday meals easily is being awaited. In this paper, we propose an automatic food image recognition system for recording people's eating habits. In the proposed system, we use the Multiple Kernel Learning (MKL) method to integrate several kinds of image features such as color, texture and SIFT adaptively. MKL enables to estimate optimal weights to combine image features for each category. In addition, we implemented a prototype system to recognize food images taken by cellular-phone cameras. In the experiment, we have achieved the 61.34% classification rate for 50 kinds of foods. To the best of our knowledge, this is the first report of a food image classification system which can be applied for practical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.