Zirconia-based dental restorations are becoming used more commonly. However, limited attention has been given to the difficulties experienced, concerning cutting, in removing the restorations when needed. The aim of the present study was to compare the cutting efficiency of diamond burs, operated using an electric high-speed dental handpiece, on zirconia (Zir) with those on lithium disilicate glass-ceramic (LD) and leucite glass-ceramic (L). In addition, evaluation of the cutting efficiency of diamond burs on Zir of different thicknesses was performed. Specimens of Zir were prepared with thicknesses of 0.5, 1.0, 2.0, and 4.0 mm, and specimens of LD and L were prepared with a thickness of 1.0 mm. Cutting tests were performed using diamond burs with super coarse (SC) and coarse (C) grains. The handpiece was operated at 150,000 rpm with a cutting force of 0.9 N. The results demonstrated that cutting of Zir took about 1.5- and 7-fold longer than cutting of LD and L, respectively. The SC grains showed significantly higher cutting efficiency on Zir than the C grains. However, when the thickness of Zir increased, the cutting depth was significantly decreased. As it is suggested that cutting of zirconia is time consuming, this should be taken into consideration in advance when working with zirconia restorations.
The purpose of the present study was to confirm if proanthocyanidin-rich grape seed extract (GSE) had the ability to improve bone health such as bone loss, bone healing, and implant osseointegration (defined as the direct connection between bone tissue and an implant) in ovariectomized (OVX) animals. We demonstrated that daily oral administration of GSE prevented bone loss in the lumbar vertebrae and femur in OVX mice. In addition, osteoclastogenesis in the lumbar spine bone of OVX mice, as assessed by histological and histomorphometric analyses, was accelerated but GSE prevented this dynamization, suggesting that GSE could counteract OVX-induced accelerated osteoclastogenic activity. In rats, OVX clearly impaired the healing of defects created on the calvaria, and GSE overcame this OVX-impaired healing. In the same way, osseointegration of a tibial implant in rats was retarded by OVX, and GSE counteracted the OVX-induced poor osseointegration, likely promoting bone healing by preventing imbalanced bone turnover. These results suggest that orally administered GSE improved implant osseointegration by mitigating the impaired bone health induced by OVX as a model of estrogen deficiency.
This study evaluated apical periodontal healing after root-end sealing using 4-META/MMA-TBB resin (SB), and root-end filling using reinforced zinc oxide eugenol cement (EBA) or mineral trioxide aggregate (MTA) when root canal infection persisted. Apical periodontitis was induced in mandibular premolars of beagles by contaminating the root canals with dental plaque. After 1 month, in the SB group, SB was applied to the resected surface following apicoectomy. In the EBA and MTA groups, a root-end cavity was prepared and filled with EBA or MTA. In the control group, the root-end was not filled. Fourteen weeks after surgery, histological and radiographic analyses in a beagle model were performed. The bone defect area in the SB, EBA and MTA groups was significantly smaller than that in the control group. The result indicated that root-end sealing using SB and root-end filling using EBA or MTA are significantly better than control.
This study aimed to fabricate a growth factor-releasing biodegradable scaffold for tissue regeneration. We prepared multishell calcium phosphate (CaP) nanoparticles functionalized with DNA, polyethyleneimine (PEI), protamine and octa-arginine (R8) and compared their respective transfection activity and cell viability measures using human mesenchymal stem cells. DNA-protamine complexes improved the transfection efficiency of CaP nanoparticles with the exception of those functionalized with R8. These complexes also greatly reduced the cytotoxicity of PEI. In addition, we also fabricated DNA-protamine-functionalized CaP nanoparticle-loaded nano-hydroxyapatite-collagen scaffolds and investigated their gene transfection efficiencies. These experiments showed that the scaffolds were associated with moderate hMSC cell viability and were capable of releasing the BMP-2 protein into hMSCs following gene transfection. In particular, the scaffold loaded with protamine-containing CaP nanoparticles showed the highest cell viability and transfection efficiency in hMSCs; thus, it might be suitable to serve as an efficient growth factor-releasing scaffold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.