We study the characteristics of photogenerated electron-hole plasma in optically pumped graphene layers at elevated (room) temperatures when the interband and intraband processes of emission and absorption of optical phonons play a crucial role. The electron-hole plasma heating and cooling as well as the effect of nonequilibrium optical phonons are taken into account. The dependences of the quasi-Fermi energy and effective temperature of optically pumped graphene layers on the intensity of pumping radiation are calculated. The variation of the frequency dependences dynamic conductivity with increasing pumping intensity as well as the conditions when this conductivity becomes negative in a certain range of frequencies are considered. The effects under consideration can markedly influence the achievement of the negative dynamic conductivity in optically pumped graphene layers associated with the population inversion and, hence, the realization graphene-based terahertz and infrared lasers operating at room temperatures.
This review highlights recent and novel trends focused on metallic (plasmonic) and dielectric metasurfaces in photoconductive terahertz (THz) devices. We demonstrate the great potential of its applications in the field of THz science and technology, nevertheless indicating some limitations and technological issues. From the state-of-the-art, the metasurfaces are, by far, able to force out previous approaches like photonic crystals and are capable of significantly increasing the performance of contemporary photoconductive devices operating at THz frequencies.
Keywords: graphene, van der Waals heterostructure, infrared photodetector. We study the operation of infrared photodetectors based on van der Waals heterostructures with the multiple graphene layers (GLs) and n-type emitter and collector contacts. The operation of such GL infrared photodetectors (GLIPs) is associated with the photoassisted escape of electrons from the GLs into the continuum states in the conduction band of the barrier layers due to the interband photon absorption, the propagation of these electrons and the electrons injected from the emitter across the heterostructure and their collection by the collector contact. The space charge of the holes trapped in the GLs provides a relatively strong injection and large photoelectric gain. We calculate the GLIP responsivity and dark current detectivity as functions of the energy of incident infrared photons and the structural parameters. It is shown that both the periodic selective doping of the inter-GL barrier layers and the GL doping lead to a pronounced variation of the GLIP spectral characteristics, particularly near the interband absorption threshold, while the doping of GLs solely results in a substantial increase in the GLIP detectivity. The doping "engineering" opens wide opportunities for the optimization of GLIPs for operation in different parts of radiation spectrum from near infrared to terahertz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.