Although measurement of right ventricular ejection fraction (RVEF) may be relevant for evaluation of therapeutic efficacy and/or prognosis in patients with pulmonary hypertension, RVEF obtained by echocardiography has limited accuracy. In contrast, radionuclide and/or magnetic resonance imaging can measure RVEF more reliably. In this study, we investigated the relationship between RVEF measured by radionuclide angiography and the echocardiographic parameters that are recommended by the American Society of Echocardiography as representative of right heart function. There were 23 study participants with pulmonary hypertension who underwent radionuclide angiography and 2-dimensional and Doppler echocardiography (n = 30 measurements). RVEF measured by radionuclide angiography correlated with right ventricular Tei index (RV Tei index) measured by Doppler echocardiography (r = -0.601, P < 0.0005). Receiver operating characteristic curve analysis showed that an RV Tei index cut-off value of 0.371 was the best of predictor of RVEF ≤35% (area under the curve = 0.768, sensitivity = 0.857, selectivity = 0.667). Multiple regression analysis showed that RVEF was correlated with the RV Tei index, and this association was independent of other echocardiographic right ventricular function parameters (r = -0.644, P < 0.005). The RV Tei index measured by Doppler echocardiography may be an acceptable surrogate marker of RVEF in patients with pulmonary hypertension.
Background: Although pulmonary vein isolation (PVI) is an established procedure for atrial fibrillation (AF), non-PV foci play a crucial role in AF recurrence. Persistent left superior vena cava (PLSVC) has been reported as critical non-PV foci. However, the effectiveness of provocation of AF triggers from PLSVC remains unclear. This study was designed to validate the usefulness of provoking AF triggers from PLSVC. Methods: This multicenter retrospective study included 37 patients with AF and PLSVC. To provoke triggers, AF was cardioverted, and re-initiation of AF was monitored under high-dose isoproterenol infusion. The patients were divided into two groups: those whose PLSVC had arrhythmogenic triggers initiating AF (Group A) and those whose PLSVC did not have triggers (Group B). Group A underwent isolation of PLSVC after PVI. Group B received PVI only. Results: Group A had 14 patients, whereas Group B had 23 patients. After a 3-year follow-up, no difference in the success rate for maintaining sinus rhythm was observed between the two groups. Group A was significantly younger and had lower CHADS2-VASc scores than Group B. Conclusions: The provocation of arrhythmogenic triggers from PLSVC was effective for the ablation strategy. PLSVC electrical isolation would not be necessary if arrhythmogenic triggers are not provoked.
Compared to clopidogrel, prasugrel has a lower incidence of ischemic events following percutaneous coronary intervention (PCI) because of an early reduction during the acute phase in P2Y12 reaction units (PRU). The objective of this study was to compare the antiplatelet effect and vascular endothelial function of both drugs during the chronic phase after PCI. Patients who had undergone PCI and were confirmed to have no restenosis by follow-up coronary angiography under dual anti-platelet therapy with clopidogrel (75 mg/day) and aspirin (100 mg/day) were randomized to either continue clopidogrel or switch to prasugrel (3.75 mg/day). At baseline, prior to randomization we determined the CYP2C19 genotype. At the baseline and 24 weeks after randomization, the P2Y12 reactivity unit (PRU) was measured using the VerifyNow™ P2Y12 assay. Endothelial function was evaluated by flow-mediated vasodilation (FMD) and reactive hyperemia peripheral arterial tonometry (RH-PAT), while and circulating CD34+/CD133+/CD45low progenitor cells were measured by flow cytometric analysis. Serum high-sensitivity C-reactive protein (hsCRP) level was also measured. The PRU was reduced significantly in the prasugrel group (P = 0.0008), especially in patients who were intermediate or poor metabolizers based on the CYP2C19 genotype (P < 0.0001). This reduction was not observed in the clopidogrel group. The number of CD34+/CD133+/CD45low cells increased in the clopidogrel group (P = 0.008), but not in the prasugrel group. The hsCRP, FMD and reactive hyperemia index measured by RH-PAT did not change in either group. Prasugrel is potentially better than clopidogrel for preventing thrombotic events, although clopidogrel may have an advantage over prasugrel in terms of preventing atherosclerotic events. Proper use of thienopyridine drugs based on the CYP2C19 genotype has promising clinical potential.
Background: Aortic dissection is thought to develop and progress due to hypertension and atherosclerosis, but the detailed mechanisms of the onset and progression are still unknown. In this study, we investigated the relationship between type of aortic dissection and the atherosclerotic risk factors including obstructive sleep apnea (OSA) and discussed potential mechanisms. Methods: There were 52 consecutive patients with aortic dissection who were admitted to our hospital, and a sleep study was performed to look for OSA in 42 of them (27 men and 15 women, age: 67 12 years, BMI: 24 4, De-Bakey type I: n=6, type IIIa: n=7, type IIIb: n=29). Results: In the 42 patients who had a sleep study, OSA was seen in 36 patients (86%). OSA was more frequent in type IIIb (n=27) than in type IIIa (n=4) aortic dissection (93% vs 57%, p= 0.01). Univariate logistic regression analysis indicated that the presence of OSA could distinguish type IIIb from IIIa (odds ratio: 10.125, 95% confidence interval: 1.272-80.623, P=0.029). Conclusion: OSA was frequently associated with aortic dissection and its prevalence was higher in type IIIb than type IIIa, suggesting that OSA may be associated with the development and progression of aortic dissection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.