SnO2 hollow nanofibers with different amount of La-doped were prepared by electrostatic spinning method. Their composition, morphology and structure were characterized by XRD, SEM, BET and XPS respectively and their gas sensing properties were also investigated. The results showed that the hollow nanofibers with the molar ratio of tin to La of 7% had the best sensitivity to ammonia of 500 ppm at the temperature of 300 °C, and the sensitivity value reached 480, which was 10 times that of pure SnO2. And its response time was also significantly shortened.
Near-infrared (NIR, 0.7–1.4 µm) imagers have wide applications in night surveillance, material sorting, machine vision and potentially automatic driving. However, limited by the high-temperature processing and requirement of single-crystalline substrate, so far flip-chip is the dominant way to connect infrared photodiodes and silicon-based readout integrated circuit (ROIC) to produce infrared imagers, suffering from complicated process and ultra-high cost and hence limiting their widespread applications in the market. Here we report the monolithic integration of colloidal quantum dots (CQD) photodiodes with complementary metal-oxide-semiconductor (CMOS) ROIC, operating as a low-cost and high-performance imager. The CQD photodetector is well designed with a CMOS-compatible structure, demonstrating a response spectral range of 400–1300 nm, a detectivity of 2.1×1012 Jones at room temperature, a -3dB bandwidth of 140 kHz and a linear dynamic range over 100 dB. The CQD imager can identify materials, inspect apple scar and veins with a large size of 640×512 pixels and a spatial resolution of 40 lp/mm at a modulation transfer function of 50%. Monolithic integration significantly reduces the cost without sacrificing performance, thus providing huge potential for the ubiquitous deployment of infrared imagers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.