Adversarial attacks are valuable for providing insights into the blindspots of deep learning models and help improve their robustness. Existing work on adversarial attacks have mainly focused on static scenes; however, it remains unclear whether such attacks are effective against embodied agents, which could navigate and interact with a dynamic environment. In this work, we take the first step to study adversarial attacks for embodied agents. In particular, we generate spatiotemporal perturbations to form 3D adversarial examples, which exploit the interaction history in both the temporal and spatial dimensions. Regarding the temporal dimension, since agents make predictions based on historical observations, we develop a trajectory attention module to explore scene view contributions, which further help localize 3D objects appeared with highest stimuli. By conciliating with clues from the temporal dimension, along the spatial dimension, we adversarially perturb the physical properties (e.g., texture and 3D shape) of the contextual objects that appeared in the most important scene views. Extensive experiments on the EQA-v1 dataset for several embodied tasks in both the white-box and black-box settings have been conducted, which demonstrate that our perturbations have strong attack and generalization abilities. §
Modern data center power distribution networks place greater demands on the stability and reliability of power supply. Growing network computing demands and complex network environments can cause network congestion, which in turn leads to network traffic overload and power supply equipment overload. Therefore, network congestion is one of the most important problems faced by data center power distribution networks. In this paper, we propose an approach called ACC-RL based on reinforcement learning (RL), which can effectively avoid network congestion and improve energy performance. ACC-RL models the congestion control task as a Partially Observable Markov Decision Process (POMDP). It is independent of the estimated value function and supports deterministic policies. It also sets the reward value function using real-time network information such as the transmission rate, RTT, and switch queue length, with the target transmission rate as the target equilibrium point. ACC-RL is highly general, can be trained on datasets running in different network environments, and generates a robust congestion control policy. The experimental results show that ACC-RL can solve the congestion problem without any predefined scenarios in different network environments. It can control the network traffic well, thus ensuring the stability and reliability of the power supply in the distribution network. We conduct network simulation experiments through NS-3. We set up different scenarios for experiments and data analysis in many-to-one, all-to-all, and long–short network environments. Compared with the popular rule-based congestion control algorithms such as TIMELY, DCQCN, and HPCC, ACC-RL shows different degrees of energy performance advantages in network metrics such as fairness, link utilization, and throughput.
Adversarial attacks are valuable for providing insights into the blindspots of deep learning models and help improve their robustness. Existing work on adversarial attacks have mainly focused on static scenes; however, it remains unclear whether such attacks are effective against embodied agents, which could navigate and interact with a dynamic environment. In this work, we take the first step to study adversarial attacks for embodied agents. In particular, we generate spatiotemporal perturbations to form 3D adversarial examples, which exploit the interaction history in both the temporal and spatial dimensions. Regarding the temporal dimension, since agents make predictions based on historical observations, we develop a trajectory attention module to explore scene view contributions, which further help localize 3D objects appeared with highest stimuli. By conciliating with clues from the temporal dimension, along the spatial dimension, we adversarially perturb the physical properties (e.g., texture and 3D shape) of the contextual objects that appeared in the most important scene views. Extensive experiments on the EQA-v1 dataset for several embodied tasks in both the white-box and black-box settings have been conducted, which demonstrate that our perturbations have strong attack and generalization abilities. §
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.