Seven xylene-utilizing bacterial strains were isolated from seawater collected off the coast of Japan. Analysis of 16S rRNA gene sequences indicated that six isolates were most closely related to the marine bacterial genera Alteromonas, Marinobacter or Aestuariibacter. The sequence of the remaining strain, KU68FT, showed low similarity to the 16S rRNA gene sequences of known bacteria with validly published names, the most similar species being Maricurvus nonylphenolicus strain KU41ET (92.6% identity). On the basis of physiological, chemotaxonomic and phylogenetic data, strain KU68FT is suggested to represent a novel species of a new genus in the family Cellvibrionaceae of the order Cellvibrionales within the Gammaproteobacteria, for which the name Halioxenophilus aromaticivorans gen. nov., sp. nov. is proposed. The type strain of Halioxenophilus aromaticivorans is KU68FT (=JCM 19134T = KCTC 32387T). PCR and sequence analysis revealed that strain KU68FT possesses an entire set of genes encoding the enzymes for the upper xylene methyl-monooxygenase pathway, xylCMABN, resembling the gene set of the terrestrial Pseudomonas putida strain mt-2.
Here, we report the complete genome sequence of Mameliella alba strain KU6B, a bacterium newly isolated from seawater of Boso Peninsula in Japan that is capable of utilizing cyclohexylamine. The complete genome contained a 5,386,988-bp circular chromosome and three circular plasmids of 256,516, 112,434, and 76,727 bp.
Cytochrome P450 monooxygenases play important roles in metabolism. Here, we report the identification and biochemical characterization of P450CHC, a novel self-sufficient cytochrome P450, from cyclohexanecarboxylate-degrading Paraburkholderia terrae KU-64. P450CHC was found to comprise a [2Fe-2S] ferredoxin domain, NAD(P)H-dependent FAD-containing reductase domain, FCD domain, and cytochrome P450 domain (in that order from the N terminus). Reverse transcription–polymerase chain reaction results indicated that the P450CHC-encoding chcA gene was inducible by cyclohexanecarboxylate. chcA overexpression in Escherichia coli and recombinant protein purification enabled functional characterization of P450CHC as a catalytically self-sufficient cytochrome P450 that hydroxylates cyclohexanecarboxylate. Kinetic analysis indicated that P450CHC largely preferred NADH (Km = 0.011 m m) over NADPH (Km = 0.21 m m). The Kd, Km, and kcat values for cyclohexanecarboxylate were 0.083 m m, 0.084 m m, and 15.9 s−1, respectively. The genetic and biochemical analyses indicated that the physiological role of P450CHC is initial hydroxylation in the cyclohexanecarboxylate degradation pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.