With the ever-increasing demand for power sources of high energy density and stability for emergent electrical vehicles and portable electronic devices, rechargeable batteries (such as lithium-ion batteries, fuel batteries, and metal–air batteries) have attracted extensive interests. Among the emerging battery technologies, metal–air batteries (MABs) are under intense research and development focus due to their high theoretical energy density and high level of safety. Although significant progress has been achieved in improving battery performance in the past decade, there are still numerous technical challenges to overcome for commercialization. Herein, this mini-review summarizes major issues vital to MABs, including progress on packaging and crucial manufacturing technologies for cathode, anode, and electrolyte. Future trends and prospects of advanced MABs by additive manufacturing and nanoengineering are also discussed.
Graphene is an ideal material for highperformance photodetectors because of its superior electronic and optical properties. However, graphene's weak optical absorption limits the photoresponsivity of conventional photodetectors based on planar (two-dimensional or 2D) back-gated graphene field-effect transistors (GFETs). Here, we report a self-rolled-up method to turn 2D buried-gate GFETs into three-dimensional (3D) tubular GFETs. Because the optical field inside the tubular resonant microcavity is enhanced and the light−graphene interaction area is increased, the photoresponsivity of the resulting 3D GFETs is significantly improved. The 3D GFET photodetectors demonstrated room-temperature photodetection at ultraviolet, visible, mid-infrared, and terahertz (THz) regions, with both ultraviolet and visible photoresponsivities of more than 1 A W −1 and photoresponsivity of 0.232 A W −1 at 3.11 THz. The electrical bandwidth of these devices exceeds 1 MHz. This combination of high photoresponsivity, a broad spectral range, and high speed will lead to new opportunities for 3D graphene optoelectronic devices and systems.
Comparative studies of lipase-catalyzed hydrolysis of soy oil in solvent-free system were carried out in shaking bath and in ultrasonic bath. A suitable ultrasonic power of 1.64 W cm(-2) was determined to guarantee satisfactory hydrolysis extent and lipase activity. The influence of temperature, pH, enzyme concentration and water/oil ratio was investigated subsequently. Compared with that in shaking bath, optimum temperature and inactivation temperature of lipase in ultrasonic bath were about 5-10 degrees C higher, while pH effect in ultrasonic bath was similar; ultrasound also led to a smooth increase of reaction rate at relatively higher enzyme loading and less use of water to saturate hydrolysis substrate. In optimum conditions, the overall hydrolysis reaction rate in the ultrasonic bath process was above 2-fold than that in the shaking bath process.
A high performance solar-blind photodetector based on Cr-doped gallium oxide (Ga2O3) has been fabricated. A 140nm-thick Ga2O3 layer was mechanically exfoliated from bulk crystal. The photodetector was based on a field effect transistor structure, which showed a very high photo-to-dark current ratio larger than 10 6 and excellent current saturation. When the photodetector was tested with a 254 nm ultraviolet light, the ratio of drain current with and without the UV light reached nearly six orders of magnitude. The dark current was as low as 5 pA. Furthermore, the current rise time and decay time were both about 25 ms. High responsivity of 4.79 × 10 5 A/W and external quantum efficiency of 2.34 × 10 6 also have been achieved at the same time. Index Terms-gallium oxide (Ga2O3), filed-effect-transistor (FET), solar-blind photodetector
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.