Abstract-Gravitational Search Algorithms (GSA) are heuristic optimization evolutionary algorithms based on Newton's law of universal gravitation and mass interactions. GSAs are among the most recently introduced techniques that are not yet heavily explored. An early work of the authors has successfully adapted this technique to the cell placement problem, and shown its efficiency in producing high quality solutions in reasonable time. We extend this work by fine tuning the algorithm parameters and transition functions towards better balance between exploration and exploitation. To assess its performance and robustness, we compare it with that of Genetic Algorithms (GA), using the standard cell placement problem as benchmark to evaluate the solution quality, and a set of artificial instances to evaluate the capability and possibility of finding an optimal solution. Experimental results show that the proposed approach is competitive in terms of success rate or likelihood of optimality and solution quality. And despite that it is computationally more expensive due to its hefty mathematical evaluations, it is more fruitful on the long run.
We present a hybrid clustering system that is based on the Adaptive Resonance Theory 1 (ARTI) Artificial Neural Network (ANN) with a Genetic Algorithm (GA) optimizer, to improve the ARTI ANN settings. As a case study, we will consider text clustering. The core of our experiments will be the quality of clustering, Multi-dimensional domain space of ARTI design parameters has many possible combinations of values that yield high clustering quality. These design parameters are hard to estimate manually. We proposed GA to find some of these sets. Results show better clustering and simpler quality estimator when compared with the existing techniques. We call this algorithm Genetically Engineered Parameters ARTI or ARTgep.
Abstract-Error correcting codes, also known as error controlling codes, are sets of codes with redundancy that provides for error detection and correction, for fault tolerant operations like data transmission over noisy channels or data retention using storage media with possible physical defects. The challenge is to find a set of m codes out of 2 n available n-bit combinations, such that the aggregate hamming distance among those codewords and/or the minimum distance is maximized. Due to the prohibitively large solution spaces of practically sized problems, greedy algorithms are used to generate quick and dirty solutions. However, modern evolutionary search techniques like genetic algorithms, swarm particles, gravitational search, and others, offer more feasible solutions, yielding near optimal solutions in exchange for some computational time. The Chemical Reaction Optimization (CRO), which is inspired by the molecular reactions towards a minimal energy state, emerged recently as an efficient optimization technique. However, like the other techniques, its internal dynamics are hard to control towards convergence, yielding poor performance in many situations. In this research, we proposed an enhanced exploration strategy to overcome this problem, and compared it with the standard threshold based exploration strategy in solving the maximally distant codes allocation problem. Test results showed that the enhancement provided better performance on most metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.