Using the Monte Carlo simulation, we study the percolation and jamming of oriented linear kmers on a square lattice that contains defects. The point defects with a concentration, d, are placed randomly and uniformly on the substrate before deposition of the k-mers. The general case of unequal probabilities for orientation of depositing of k-mers along different directions of the lattice is analyzed. Two different relaxation models of deposition that preserve the predetermined order parameter s are used. In the relaxation random sequential adsorption (RRSA) model, the deposition of k-mers is distributed over different sites on the substrate. In the single cluster relaxation (RSC) model, the single cluster grows by the random accumulation of k-mers on the boundary of the cluster (Eden-like model). For both models, a suppression of growth of the infinite (percolation) cluster at some critical concentration of defects dc is observed. In the zero defect lattices, the jamming concentration pj (RRSA model) and the density of single clusters ps (RSC model) decrease with increasing length k-mers and with a decrease in the order parameter. For the RRSA model, the value of dc decreases for short k-mers (k < 16) as the value of s increases. For k = 16 and 32, the value of dc is almost independent of s. Moreover, for short k-mers, the percolation threshold is almost insensitive to the defect concentration for all values of s. For the RSC model, the growth of clusters with ellipse-like shapes is observed for non-zero values of s. The density of the clusters ps at the critical concentration of defects dc depends in a complex manner on the values of s and k. An interesting finding for disordered systems (s = 0) is that the value of ps tends towards zero in the limits of the very long k-mers, k → ∞ and very small critical concentrations dc → 0. In this case, the introduction of defects results in a suppression of k-mer stacking and in the formation of 'empty' or loose clusters with very low density. On the other hand, denser clusters are formed for ordered systems with ps ≈ 0.065 at s = 0.5 and ps ≈ 0.38 at s = 1.0.
Using the Monte Carlo simulation, we study the percolation and jamming of oriented linear k-mers on a square lattice that contains defects. The point defects with a concentration, d, are placed randomly and uniformly on the substrate before deposition of the k-mers. The general case of unequal probabilities for orientation of depositing of k-mers along different directions of the lattice is analyzed. Two different relaxation models of deposition that preserve the predetermined order parameter s are used. In the relaxation random sequential adsorption (RRSA) model, the deposition of k-mers is distributed over different sites on the substrate. In the single cluster relaxation (RSC) model, the single cluster grows by the random accumulation of k-mers on the boundary of the cluster (Eden-like model). For both models, a suppression of growth of the infinite (percolation) cluster at some critical concentration of defects dc is observed. In the zero defect lattices, the jamming concentration pj (RRSA model) and the density of single clusters ps (RSC model) decrease with increasing length k-mers and with a decrease in the order parameter. For the RRSA model, the value of dc decreases for short k-mers (k < 16) as the value of s increases. For k = 16 and 32, the value of dc is almost independent of s. Moreover, for short k-mers, the percolation threshold is almost insensitive to the defect concentration for all values of s. For the RSC model, the growth of clusters with ellipse-like shapes is observed for non-zero values of s. The density of the clusters ps at the critical concentration of defects dc depends in a complex manner on the values of s and k. An interesting finding for disordered systems (s = 0) is that the value of ps tends towards zero in the limits of the very long k-mers, k → ∞ and very small critical concentrations dc → 0. In this case, the introduction of defects results in a suppression of k-mer stacking and in the formation of 'empty' or loose clusters with very low density. On the other hand, denser clusters are formed for ordered systems with ps ≈ 0.065 at s = 0.5 and ps ≈ 0.38 at s = 1.0.
Тарасевич Юрий Юрьевич - доктор физико-математических наук, профессор, заведующий лабораторией «Математическое моделирование и информационные технологии в науке и образовании» Астраханского государственного университета. E-mail: tarasevich@asu.edu.ruШиняева Таисия Сергеевна - аспирант, младший научный сотрудник лаборатории «Математическое моделирование и информационные технологии в науке и образовании» Астраханского государственного университета. E-mail: danilova.taisiya@gmail.comАдрес: г. Астрахань, 414056, ул. Татищева, 20а.Обсуждаются критерии оценки эффективности научных исследований. Анализируется выполнимость задачи разработать научно обоснованные методы, которые позволят оценить деятельность научных направлений и научных коллективов. С точки зрения авторов, основой для проведения полномасштабных исследований динамики развития научных направлений и научных коллективов должны служить информационные системы текущих исследований (Current Research Information Systems, CRIS) организаций, интегрированные в национальную CRIS. Авторы предлагают методику оценки результативности текущих научных исследований, основанную на анализе престижа журналов, в которых опубликованы результаты исследований научного коллектива.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.