It is generally believed that eukaryotic ribosomes first associate with mRNA in the cytoplasm. However, we show with chromosomal immunostaining and in situ hybridization that ribosomal subunits are present at transcription sites of Drosophila salivary gland chromosomes. Immunostaining was carried out with antibodies specific for 27 ribosomal proteins, two translation factors and one that specifically recognizes rRNA. In situ hybridization was with several probes specific for both rRNA subunits. The kinetics of recruitment following transcription initiation suggest that the association is with newly transcribed pol II transcripts. These data indicate that ribosome components associate with nascent RNP complexes within the nucleus.
STAG2 encodes a cohesin component and is frequently mutated in myeloid neoplasms, showing highly significant co-mutation patterns with other drivers, including RUNX1. However, the molecular basis of cohesin-mutated leukemogenesis remains poorly understood. Here we show a critical role of an interplay between Stag2 and Runx1 in the regulation of enhancer-promoter looping and transcription in hematopoiesis. Combined loss of Stag2 and Runx1, which co-localize at enhancer-rich, Ctcf-deficient sites, synergistically attenuates enhancer-promoter loops, particularly at sites enriched for RNA polymerase II and Mediator, and deregulates gene expression, leading to myeloid-skewed expansion of hematopoietic stem/progenitor cells (HSPCs) and myelodysplastic syndromes (MDS). Attenuated enhancer-promoter loops in Stag2/Runx1-deficient cells are associated with downregulation of genes with high basal transcriptional pausing, which are important for regulation of HSPCs. Down-regulation of high-pausing genes is also confirmed in STAG2/cohesin-mutated primary leukemia samples. Our results highlight a unique STAG2/RUNX1 interplay in gene regulation and provide insights into cohesin-mutated leukemogenesis.
SignificanceWe demonstrate a critical role of an interplay between Stag2 and a master transcription factor of hematopoiesis, Runx1, in MDS development, and further reveal their contribution to regulation of high-order chromatin structures, particularly enhancer-promoter looping, and the link between transcriptional pausing and selective gene dysregulation caused by cohesin deficiency.
The composition of genetic material in extracellular vesicles (EV) has sparked interest particularly in the potential for horizontal gene transfer by EV. Although the RNA content of EV has been studied extensively, few reports have examined the DNA content of EV. It is still unclear how DNA is packaged inside EV, and whether they are functional in recipient cells. In this review, we describe the biological significance of genetic material in EV and their possible impacts in recipient cells, with focus on DNA from cancer cell‐derived EV and the potential roles they may play in the cancer microenvironment. Another important feature of the genetic content of EV is the presence of retrotransposon elements. In this review, we discuss the possibility of an EV‐mediated mechanism for the dispersal of retrotransposon elements, and their potential involvement in the development of genetically influenced diseases. In addition to this, we discuss the potential involvement of EV in the transfer of genetic material across species, and their possible impacts in modulating genome evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.