Stage-specific embryonic antigen-3 (SSEA-3)-positive multipotent mesenchymal cells (multilineage differentiating stress-enduring [Muse] cells) were isolated from cultured human adipose tissue-derived stem/stromal cells (hASCs) and characterized, and their therapeutic potential for treating diabetic skin ulcers was evaluated. Cultured hASCs were separated using magnetic-activated cell sorting into positive and negative fractions, a SSEA-3+ cell-enriched fraction (Muse-rich) and the remaining fraction (Muse-poor). Muse-rich hASCs showed upregulated and downregulated pluripotency and cell proliferation genes, respectively, compared with Muse-poor hASCs. These cells also released higher amounts of certain growth factors, particularly under hypoxic conditions, compared with Muse-poor cells. Skin ulcers were generated in severe combined immunodeficiency (SCID) mice with type 1 diabetes, which showed delayed wound healing compared with nondiabetic SCID mice. Treatment with Muse-rich cells significantly accelerated wound healing compared with treatment with Muse-poor cells. Transplanted cells were integrated into the regenerated dermis as vascular endothelial cells and other cells. However, they were not detected in the surrounding intact regions. Thus, the selected population of ASCs has greater therapeutic effects to accelerate impaired wound healing associated with type 1 diabetes. These cells can be achieved in large amounts with minimal morbidity and could be a practical tool for a variety of stem cell-depleted or ischemic conditions of various organs and tissues.
Human adipose‐derived stem/stromal cell spheroids enriched in undifferentiated cells were efficiently prepared by using three‐dimensional floating culture in non‐cross‐linked hyaluronic acid gel. The results suggest the superior plasticity and growth factor‐secreting potential of the spheroids and clearly indicate their therapeutic power for promoting tissue regeneration. As an easy local injectable, spheroids are expected to be a powerful tool to treat various stem cell‐depleted conditions/organs through nonintravenous administration.
For chronic wounds, the delivery of stem cells in spheroidal structures can enhance graft survival and stem cell potency. We describe an easy method for the 3D culture of adipose-derived stem/stromal cells (ASCs) to prepare a ready-to-use injectable. We transferred suspensions of monolayer-cultured ASCs to a syringe containing hyaluronic acid (HA) gel, and then incubated the syringe as a 3D culture vessel. Spheroids of cells formed after 12 h. We found that 6 × 106 ASCs/ml in 3% HA gel achieved the highest spheroid density with appropriate spheroid sizes (20–100 µm). Immunocytology revealed that the stem cell markers, NANOG, OCT3/4, SOX-2, and SSEA-3 were up-regulated in the ASC spheroids compared with those in nonadherent-dish spheroids or in monolayer cultured ASCs. In delayed wound healing mice models, diabetic ulcers treated with ASC spheroids demonstrated faster wound epithelialization with thicker dermis than those treated with vehicle alone or monolayer cultured ASCs. In irradiated skin ulcers in immunodeficient mice, ASC spheroids exhibited faster healing and outstanding angiogenic potential partly by direct differentiation into α-SMA+ pericytes. Our method of 3D in-syringe HA gel culture produced clinically relevant amounts of ready-to-inject human ASC microspheroids that exhibited superior stemness in vitro and therapeutic efficacy in pathological wound repair in vivo.
These findings suggest that long-term lymphatic volume overload can induce chronic tissue inflammation, progressive fibrosis, impaired homeostasis, altered remodelling of adipose tissue, impaired regenerative capacity and immunological dysfunction. Further elucidation of the pathophysiological mechanisms underlying lymphoedema will lead to more reliable therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.