We report the observation of optically pumped lasing in ZnO at room temperature. Thin films of ZnO were grown by plasma-enhanced molecular beam epitaxy on (0001) sapphire substrates. Laser cavities formed by cleaving were found to lase at a threshold excitation intensity of 240 kW cm−2. We believe these results demonstrate the high quality of ZnO epilayers grown by molecular beam epitaxy while clearly demonstrating the viability of ZnO based light emitting devices.
ZnO single crystal thin films were grown on c-plane sapphire using oxygen microwave plasma assisted molecular beam epitaxy. Atomically flat oxygen-terminated substrate surfaces were obtained by pre-growth cleaning procedures involving an oxygen plasma treatment. A two dimensional nucleation during the initial growth which is followed by a morphology transition to three dimensional nucleation was observed by in situ reflection high energy electron diffraction. X-ray diffraction (XRD) and photoluminescence investigations suggest that the ZnO epilayer consists of a high quality layer on top of a transition layer containing a high density of defects in the interfacial region. A full width at half maximum (FWHM) of 0.005° is obtained for the ZnO(0002) diffraction peak in an XRD rocking curve, while a broad tail extending from the peak can also be observed. The photoluminescence spectra exhibit dominant bound exciton emission with a FWHM of 3 meV at low temperatures and free exciton emission combined with a very weak deep level emission at room temperature. Recently, these high quality ZnO epilayers have allowed the observation of optically pumped lasing at room temperatures as well as stimulated emission up to 550 K, both of which are due to an exciton related mechanism.
The emission spectrum of high quality ZnO epilayers is studied from room temperature up to 550 K. At room temperature and low excitation power a single emission peak is observed which may be identified with the free exciton from its peak energy and dependence on temperature. However, when excitation intensities exceed 400 kW cm−2 a sharp peak emerges at lower energy which we attribute to exciton-exciton scattering. At higher excitation intensities (>800 kW cm−2) a second stimulated emission peak emerges at even lower energies: we attribute this peak to be stimulated emission of an electron hole plasma. Similar features are observed for all temperatures up to 550 K.
We have investigated the structural and optical properties of Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy. The carrier concentration in Ga-doped ZnO films can be controlled from 1.33×1018/cm3 to 1.13×1020/cm3. Despite high Ga incorporation, the linewidth of (0002) ω-rocking curves of Ga-doped ZnO films still lies in the range from 5 to 15 arc min. Photoluminescence (PL) spectra of Ga-doped ZnO films show dominant near-bandedge emission with negligibly weak deep-level emission, independent of carrier concentration. The PL spectrum exhibits a new emission line at 3.358 eV, which corresponds to exciton emission bound to a Ga donor. To avoid degradation of the PL intensity, the maximum dopability of Ga in ZnO is determined to be around 2.6×1019/cm3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.