G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) is a novel G protein-coupled receptor for bile acid. Tissue distribution and cell-type specificity of Gpbar1 mRNA suggest a potential role for the receptor in the endocrine system; however, the precise physiological role of Gpbar1 still remains to be elucidated. To investigate the role of Gpbar1 in vivo, the Gpbar1 gene was disrupted in mice. In homozygous mice, total bile acid pool size was significantly decreased by 21-25% compared with that of the wild-type mice, suggesting that Gpbar1 contributes to bile acid homeostasis. In order to assess the impact of Gpbar1 deficiency in bile acid homeostasis more precisely, Gpbar1 homozygous mice were fed a high-fat diet for 2 months. As a result, female Gpbar1 homozygous mice showed significant fat accumulation with body weight gain compared with that of the wild-type mice. These findings were also observed in heterozygous mice to the same extent. Although the precise mechanism for fat accumulation in female Gpbar1 homozygous mice remains to be addressed, these data indicate that Gpbar1 is a potential new player in energy homeostasis. Thus, Gpbar1-deficient mice are useful in elucidating new physiological roles for Gpbar1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.