Androgen ablation therapies are effective in controlling prostate cancer. Although most cancers relapse and progress despite androgen ablation, some patients experience antiandrogen withdrawal syndrome, in which those treated with antiandrogen show clinical improvement when antiandrogen is discontinued. Although the androgen receptor (AR) is suggested to play an important role in prostate cancer progression even after the androgen ablation, limited tissue availability for molecular studies and small numbers of human prostate cancer cell lines have restricted prostate cancer research. Here, we describe KUCaP, a novel serially transplantable human prostate cancer xenograft model. We established KUCaP from liver metastatic tissue of a patient treated with antiandrogen bicalutamide. KUCaP expressed the AR with a point mutation at amino acid 741 (tryptophan to cysteine; W741C) in the ligand-binding domain. This mutation was also present in cancerous tissue used for generation of KUCaP. Although the growth of KUCaP in male mice was androgen dependent, bicalutamide aberrantly promoted the growth and prostate-specific antigen production of KUCaP. For the first time, we show the agonistic effect of bicalutamide to a xenograft with clinically induced AR mutation. This bicalutamide-responsive mutant AR will serve in the development of new therapies for androgen ablation-resistant prostate cancers. (Cancer Res 2005; 65(21): 9611-6)
Abbreviations & Acronyms ADT = androgen deprivation therapy AR = androgen receptor AS = alternative splicing AVPC = aggressive variant prostate carcinoma CgA = chromogranin A CRPC = castration-resistant prostate cancer IHC = immunohistochemistry LCNEC = large cell neuroendocrine carcinoma NA = not available NE = neuroendocrine NEPC = neuroendocrine prostate cancer NSE = neuron-specific enolase OS = overall survival PCa = prostate adenocarcinoma PEG10 = paternally expressed 10 REST = RE1-silencing transcription factor SCC = small cell carcinoma SRRM4 = serine/arginine repetitive matrix 4 SYP = synaptophysin t-NEPC = treatment-related neuroendocrine prostate cancer TRAMP = transgenic adenocarcinoma mouse prostate Abstract: Treatment-related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration-resistant prostate cancer treatment. Treatment-related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen receptor pathway inhibition. The incidence of treatment-related neuroendocrine prostate cancer has been rising due to the increasing use of potent androgen receptor pathway inhibitors. Typically, treatmentrelated neuroendocrine prostate cancer is characterized by either low or absent androgen receptor expression, small cell carcinoma morphology and expression of neuroendocrine markers. Clinically, it manifests with predominantly visceral or lytic bone metastases, bulky tumor masses, low prostate-specific antigen levels or a short response duration to androgen deprivation therapy. Furthermore, although the tumor initially responds to platinum-based chemotherapy, the duration of the response is short. Based on the poor prognosis, it is imperative to identify novel molecular targets for treatmentrelated neuroendocrine prostate cancer. Recent advances in genomic and molecular research, supported by novel in vivo models, have identified some of the key molecular characteristics of treatment-related neuroendocrine prostate cancer. The gain of MYCN and AURKA oncogenes, along with the loss of tumor suppressor genes TP53 and RB1 are key genomic alterations associated with treatment-related neuroendocrine prostate cancer. Androgen receptor repressed genes, such as BRN2 and PEG10, are also necessary for treatment-related neuroendocrine prostate cancer. These genetic changes converge on pathways upregulating genes, such as SOX2 and EZH2, that facilitate lineage plasticity and neuroendocrine differentiation. As a result, on potent androgen receptor pathway inhibition, castration-resistant prostate cancer transdifferentiates to treatment-related neuroendocrine prostate cancer in a clonally divergent manner. Further understanding of the disease biology is required to develop novel drugs and biomarkers that would help treat this aggressive prostate cancer variant.
More effective therapeutic approaches for castration-resistant prostate cancer (CRPC) are urgently needed, thus reinforcing the need to understand how prostate tumors progress to castration resistance. We have established a novel mouse xenograft model of prostate cancer, KUCaP-2, which expresses the wild-type androgen receptor (AR) and which produces the prostate-specific antigen (PSA). In this model, tumors regress soon after castration, but then reproducibly restore their ability to proliferate after 1 to 2 months without AR mutation, mimicking the clinical behavior of CRPC. In the present study, we used this model to identify novel therapeutic targets for CRPC. Evaluating tumor tissues at various stages by gene expression profiling, we discovered that the prostaglandin E receptor EP4 subtype (EP4) was significantly upregulated during progression to castration resistance. Immunohistochemical results of human prostate cancer tissues confirmed that EP4 expression was higher in CRPC compared with hormone-naïve prostate cancer. Ectopic overexpression of EP4 in LNCaP cells (LNCaP-EP4 cells) drove proliferation and PSA production in the absence of androgen supplementation in vitro and in vivo. Androgen-independent proliferation of LNCaP-EP4 cells was suppressed when AR expression was attenuated by RNA interference. Treatment of LNCaP-EP4 cells with a specific EP4 antagonist, ONO-AE3-208, decreased intracellular cyclic AMP levels, suppressed PSA production in vitro, and inhibited castration-resistant growth of LNCaP-EP4 or KUCaP-2 tumors in vivo. Our findings reveal that EP4 overexpression, via AR activation, supports an important mechanism for castration-resistant progression of prostate cancer. Furthermore, they prompt further evaluation of EP4 antagonists as a novel therapeutic modality to treat CRPC. Cancer Res; 70(4); 1606-15. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.