Caroli's disease (congenital intrahepatic biliary dilatation) associated with congenital hepatic fibrosis is an autosomal recessive polycystic kidney disease. Recently, the polycystic kidney (PCK) rat, a spontaneous mutant derived from a colony of Crj:CD rats with polycystic lesions in the liver and an autosomal recessive mode of inheritance, was reported. In the present study, the pathology of the hepatobiliary system and the biliary cell-kinetics were evaluated in fetuses (day 18 to 21 of gestation) and neonates and adults (1 day to 4 months after delivery) of PCK rats. Crj:CD rats were used as a control. Multiple segmental and saccular dilatations of intrahepatic bile ducts were first observed in fetuses at 19 days of gestation. The dilatation spread throughout the liver and the degree of dilatation increased with aging. Gross and histological features characterizing ductal plate malformation were common in the intrahepatic bile ducts. Overgrowth of portal connective tissue was evident and progressive after delivery. These features were very similar to those of Caroli's disease with congenital hepatic fibrosis. Proliferative activity in the biliary epithelial cells was greater in PCK rats than controls during the development. In contrast, the biliary epithelial apoptosis was less extensive in PCK rats than the controls until 1 week after delivery, but greater after 3 weeks, suggesting that the remodeling defect in immature bile ducts associated with the imbalance of cell kinetics plays a role in the occurrence of intrahepatic biliary anomalies in PCK rats. The PCK rat could be a useful and promising animal model of Caroli's disease with congenital hepatic fibrosis.
Polycystic kidney (PCK) rats exhibit a multiorgan cyst pathology similar to human autosomal recessive polycystic kidney disease, and are proposed as an animal model of Caroli's disease with congenital hepatic fibrosis (CHF). This study investigated the expression and function of selected components of the mitogen activated protein kinase (MAPK) pathway in cultured intrahepatic biliary epithelial cells (BECs) of PCK rats. Compared to the proliferative activity of cultured BECs of control rats, those of the PCK rats were hyperresponsive to epidermal growth factor (EGF). The increase in BEC proliferation was accompanied by overexpression of MAPK/extracellular signal-regulated protein kinase (ERK) kinase 5 (MEK5), and subsequent phosphorylation of ERK5 in vitro. The increased proliferative activity was significantly inhibited by the transfection of short interfering RNA against MEK5 mRNA. An EGF receptor tyrosine kinase inhibitor, gefitinib ("Iressa", ZD1839), also significantly inhibited the abnormal growth of cultured BECs of PCK rats. By contrast, treatment with PD98059 and U0126, inhibitors for MEK1/2, was less effective. These results suggest that the activation of the MEK5-ERK5 cascade plays a pivotal role in the biliary dysgenesis of PCK rats, and also provide insights into the pathogenesis of Caroli's disease with CHF. As the MEK5-ERK5 interaction is highly specific, it may represent a potential target of therapy.
The polycystic kidney (PCK) rat is an animal model of Caroli's disease with congenital hepatic fibrosis, in which the mechanism of progressive hepatic fibrosis remains unknown. This study aimed to clarify the mechanism of hepatic fibrosis of the PCK rat from the viewpoint of the contribution of pathological cholangiocytes. In liver sections of the PCK rats, intrahepatic bile ducts were constituted by two different phenotypes: bile ducts lined by cuboidal-shaped and flat-shaped cholangiocytes. The flat-shaped cholangiocytes showed reduced immunohistochemical expression of the biliary epithelial marker cytokeratin 19 and positive immunoreactivity for vimentin and fibronectin. When cultured cholangiocytes of the PCK rat were treated with transforming growth factor (TGF)-1, a potent inducer of epithelial-mesenchymal transition, induction of vimentin, fibronectin, and collagen expression occurred in the PCK cholangiocytes. Although the TGF-1 treatment reduced cytokeratin 19 expression, the epithelial cell features characterized by the expression of E-cadherin and zonula occludens-1 was maintained, and ␣-smooth muscle actin expression was not induced in the cholangiocytes. Cholangiocytes of the PCK rat may acquire mesenchymal features in response to TGF-1 and participate in progressive hepatic fibrosis by producing extracellular matrix molecules, which seems to be a different event from epithelial-mesenchymal transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.