Schlieren and shadowgraph photography has been widely used to offer insight into the flow field in aerospace engineering due to their ease of application. The high-speed schlieren and shadowgraph techniques are typically applied to investigation of unsteady shock wave structure including shock reflection patterns and shock wave/boundary layer interactions, etc. Generally, qualitative analysis is performed based on the schlieren and shadowgraph image sequences. To process and analyze the large data set of the high-speed schlieren and shadowgraph images quantitatively, especially for the shock wave detection and tracking, a software was developed based on MATLAB GUI and its image processing toolbox. In this study, the image processing techniques exploited in the software, such as background subtraction, filter, threshold, edge detection, and shock tracking are presented. A case study on the phenomena of shock wave reflection from a solid surface was conducted. The results show that the proper filter method and the background image subtraction can effectively eliminate the image noises in frequency domain, which makes it easier to analyze the flow structure. Moreover, the instantaneous locations of shock waves are detected accurately, and the shock wave propagation speed calculated using the developed software are consistent with those of previous studies.
This paper proposes and demonstrates a novel shock tube driven by commercially available detonation transmission tubing in a safe, repeatable, and controllable manner for laboratory scale experiments. A circular cross-sectional open-ended shock tube (inner-diameter D = 22 mm) driven by detonation transmission tubing was used to investigate the working principle of this novel shock tube using a dynamic pressure transducer and time-resolved shadowgraph photography. Specifically, the shock Mach number, repeatability, and flow structure generated from the tube exit were characterized. The experimental result shows that the flow structure including an initial shock wave, a vortex ring, an embedded shock, and an oblique shock pattern is similar to that of the conventional compressed-gas driven shock tubes. Furthermore, the shock tube has good repeatability of less than 2% with a shock Mach number up to 1.58. The versatile and cost-effective nature of the shock tube driven by detonation transmission tubing opens a new horizon for shock wave-assisted interdisciplinary applications.
The thermal perturbation caused by a nanosecond pulsed dielectric barrier discharge (ns-DBD) plasma actuator may lead to boundary layer transition. Hence, understanding of the thermal flow induced by the ns-DBD plasma actuator will contribute to the development of an efficient flow control device for various engineering applications. In this study, the spatial density distribution related to the thermal flow was experimentally investigated using both qualitative and quantitative schlieren techniques. The focus of this study is to understand the initial temporal variation of the spatial density distribution above the ns-DBD plasma actuator in quiescent air. The quantitative visualisation showed that a hot plume is generated from the edge of the exposed electrode and moves slightly towards the ground electrode. A possible explanation is that an ionic wind and/or an induced jet leads to the movement of the hot plume. However, the plasma-induced flow (the ionic wind and the induced jet) is generated after the primary plasma discharges; namely, the hot plume does not move immediately after the first plasma discharge. At almost the same time as the movement of the hot plume, consecutive plasma discharges enhance the density of the hot plume; thereafter, the density reaches almost a steady state.
A copy can be downloaded for personal non-commercial research or study, without prior permission or chargeThe content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s) hold the flow and stabilise the combustion, is one mechanism which has attracted much attention, requiring further research to study the unsteady flow features and interactions occurring within the cavity. In this study we combine the transverse jet injection upstream of a cavity with an impinging shock to see how this interaction influences the cavity flow, since impinging shocks have been shown to enhance mixing of transverse jets. Utilising qualitative and quantitative methods:schlieren, oilflow, PIV, and PSP the induced flowfield is analysed. The impinging shock lifts the shear layer over the cavity and combined with the instabilities generated by the transverse jet creates a highly complicated flowfield with numerous vertical structures. The interaction between the oblique shock and the jet leads to a relatively uniform velocity distribution within the cavity. * Hossein.Zare-Behtash@glasgow.ac.uk
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.