ARFI imaging was observed to have no apparent histological damage to the placental tissue. Ex vivo placentas from the FGR group were significantly more firm. Moreover, Vs values and Z-scores of birthweight had a significant negative correlation. Additional investigations are needed about the utility of this method for the evaluation of placental function in vivo.
The receptor-type protein tyrosine kinases in murine pancreatic islets were screened to identify possible growth/differentiation factors in pancreatic beta-cells. The analysis revealed that insulin receptor-related receptor (IRR) is highly expressed in the islets as well as in several highly differentiated beta-cell lines derived from transgenic mice. Islets predominantly contain IRR as uncleaved proreceptors compared with IRR as processed forms in the beta-cell lines, suggesting that the activity of IRR is regulated on the level of processing proteases in vivo. To examine the IRR signaling pathway, a chimeric receptor consisting of the extracellular domain of insulin receptor and the intracellular domain of IRR was expressed in Chinese hamster ovary cells. The hybrid receptor is functional because insulin is capable of tyrosine-phosphorylating the catalytic domain in these cells. It also stimulates the tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and IRS-2, indicating that both proteins serve as substrates of IRR-protein tyrosine kinase in intact cells. The phenotype of the IRS-2 knockout mouse recently reported suggests that an IRS-2-mediated signaling pathway controls the compensatory increase in pancreatic beta-cell mass in insulin-resistant states. From our findings of the specific expression of IRR and its ability of signaling to IRS-2, we speculate that this receptor might play a role in the regulation of beta-cell mass.
A new human cell line, designated Ty-82, was established from the pleural effusion of a 22-year-old woman with undifferentiated thymic carcinoma. This cell line consisted of primitive cells that were positive for alpha-naphthyl butyrate esterase and acid phosphatase. The cells were shown to express epithelial membrane antigen, but were completely negative for cytokeratin, carcinoembryonic antigen, glial fibrillary acidic protein, desmin, S-100 protein, lysozyme, Leu-7, HLA-DR (Ia), leukocyte common antigen, Ki-I antigen, T-cell antigens, B-cell antigens, myelomonocyte antigens, and Epstein-Barr-virus nuclear antigen. Electron microscopy showed that the cells were highly anaplastic, with no sign of cellular differentiation to any lineages. The Ty-82 cell line was found to have a karyotype of 46,XX,t(15;19)(q15;p13), being identical to that of the patient's tumor cells. Four of 5 nude mice inoculated sub-cutaneously with Ty-82 cells developed tumors which displayed a histological picture similar to the original tumor. Thymic carcinoma is a recently recognized entity, and its cellular and clinical behavior are poorly understood. The newly established thymic carcinoma cell line would provide a useful tool for the better understanding of this rare disease.
The phox homology (PX) domain is a phosphoinositide-binding module that typically binds phosphatidylinositol 3-phosphate. Out of 47 mammalian proteins containing PX domains, more than 30 are denoted sorting nexins and several of these have been implicated in internalization of cell surface proteins to the endosome, where phosphatidylinositol-3-phosphate is concentrated. Here we investigated a multimodular protein termed PXK, composed of a PX domain, a protein kinase-like domain, and a WASP homology 2 domain. We show that the PX domain of PXK localizes this protein to the endosomal membrane via binding to phosphatidylinositol 3-phosphate. PXK expression in COS7 cells accelerated the ligand-induced internalization and degradation of epidermal growth factor receptors by a mechanism requiring phosphatidylinositol 3-phosphate binding but not involving the WASP homology 2 domain. Conversely, depletion of PXK using RNA interference decreased the rate of epidermal growth factor receptor internalization and degradation. Ubiquitination of epidermal growth factor receptor by the ligand stimulation was enhanced in PXK-expressing cells. These results indicate that PXK plays a critical role in epidermal growth factor receptor trafficking through modulating ligand-induced ubiquitination of the receptor.Both constitutive endocytosis and activated endocytosis are highly regulated events by which cells take up nutrients and internalize receptors for recycling or degradation (47). Endocytosed molecules are delivered to early endosomes, where the components are sorted to the cell surface for recycling back to the plasma membrane, or to late endosomes to be degraded in lysosomes (17). The molecular mechanisms regulating these events are not fully understood.One of the major protein families involved in the trafficking of membrane compartments is sorting nexins (SNXs), which are characterized by the presence of phox homology (PX) domains (8,65). The PX domain is a protein module which consists of approximately 130 amino acids with three -strands followed by three ␣-helices forming a helical subdomain, and the general function of this module is to interact with the head groups of inositol phospholipids through which parental proteins are targeted to specific cellular compartments. Most of the SNXs examined to date specifically recognize phosphatidylinositol 3-phosphate [PtdIns(3)P], which is found predominately in early endosomes (11). The founding member of the SNX family, SNX1, was initially identified as an interaction partner of epidermal growth factor receptor (EGFR), and the expression of SNX1 enhanced lysosomal degradation of EGFR (38); therefore, SNXs are most likely to be involved in the trafficking of many different families of receptors which are recycled to the cell surface or sent to the lysosome for degradation (19). On the other hand, PX domain-containing proteins have also been reported to bind to phosphoinositides other than PtdIns(3)P and to have functions independent of receptor trafficking (54). For example, phosp...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.