The variability in measurements of complex permittivities of tumor tissues between multiple samples could be attributed to the volume fraction of cancer cells in the excised tumor tissue. By the use of a digital photomicrograph image and hematoxylin-eosin staining, it was found that the malignant tumor tissue was not fully occupied by the cancer cells, but the cells were distributed locally in the stroma cells depending on the growth of cancer. The results showed that the volume fraction of cancer cells in the tumor tissue had a correlation to the measured conductivity and dielectric constant in the frequency range from 1 GHz to 6 GHz. It introduces a method to understand and gauge variability in measurements between different tumors.
In this report, a hand-held impulse-radar breast cancer detector is presented and the detectability of malignant breast tumors is demonstrated in the clinical test at Hiroshima University Hospital, Hiroshima, Japan. The core functional parts of the detector consist of 65-nm technology complementary metal-oxide-semiconductor (CMOS) integrated circuits covering the ultrawideband width from 3.1 to 10.6 GHz, which enable the generation and transmission of Gaussian monocycle pulse (GMP) with the pulse width of 160 ps and single port eight throw (SP8T) switching matrices for controlling the combination of 4 × 4 cross-shaped dome antenna array. The detector is designed to be placed on the breast with the patient in the supine position. The detectability of malignant tumors is confirmed in excised breast tissues after total mastectomy surgery. The three-dimensional positions of the tumors in the imaging results are consistent with the results of histopathology analysis. The clinical tests are conducted by a clinical doctor for five patients at the hospital. The malignant tumors include invasive ductal carcinoma (IDC) and ductal carcinoma in situ (DCIS). The final confocal imaging results are consistent with those of Magnetic Resonance Imaging (MRI), demonstrating the feasibility of the hand-held impulse-radar detector for malignant breast tumors.
To lower the dielectric constant k of interlayer-dielectric films with two-dimensional pore structures while maintaining their mechanical strength, the influences of pore arrangement on the elastic modulus E and k of the films were investigated. It was found that periodicity in pore structure enhances E with constant k. Periodic porous silica films having a hexagonal arrangement of circular cylindrical pores with k < 2:0 and E > 3 GPa were demonstrated to be feasible at a porosity of 0.614 using a bulk material with a k of 4.0 and E > 21 GPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.