How the pi conjugation length affects the fluorescence emission efficiency is elucidated by examination of the theoretical and experimental relationship between absolute quantum yield (Phi(f)) and magnitude (Api) of the pi conjugation length in the excited singlet state, which provides a novel concept for molecular design for highly fluorescent organic compounds. As a tool to predict Phi(f) from a structural model, (nu(a) - nu(f))1/2 x a3/2 (nu(a): wavenumber of absorption maximum, nu(f): wavenumber of emission maximum, a: molecular radius) could be used instead of Api. The concept should be valuable for potential applications to (1) examination of an excited singlet state structure (for example, coplanarity of excited-state molecules) and (2) molecular design of novel materials, in which the excited singlet state plays an important role, such as highly efficient fluorophores, electroluminescent materials, photoconducting materials, and nonlinear optical materials. A remarkably intense green fluorophore (Phi(f) 0.88, log epsilon 4.72, lambda(em) 527 nm) is created based on this concept, which is of great interest in relation to a green fluorescent protein (Topaz, T203Y type, Phi(f) 0.60, log epsilon 4.98, lambda(em) 527 nm).
In view of increasing interest in light-emitting materials, we have investigated the light-emitting characteristics and occurrence of conjugation between arms of star-shaped rigid molecules that comprise a 1,3,5-triethynylbenzene core and methoxy group-substituted oligo(p-phenylethynylene) arms. Consequently, we achieved the ultimate goal (Phif approximately 1.0, log epsilon > 5) for organic molecules with respect to light-emitting ability by creating very intense violet-blue (8, Phif = 0.97, log epsilon = 5.11) and blue (9, Phif = 0.98, log epsilon = 5.29) bright light-emitters. Also, pi conjugation was found to occur between the arms of 9 despite the meta-substituted system. We found a linear relationship of kr (with positive slope) and kd (with negative slope) with the number of dimethoxyphenyleneethynylene units for MMPT (4, 6, 8) and DMPT (5, 7, 9) homologues and the contrasting solvent effect on lambdaem of 8 and 9. It is also interesting that lambdaabs, epsilon, lambdaem, and Phif of 9 are greater than those of the corresponding banana- and rod-shaped molecules.
[reaction: see text] Novel rod-shaped polycyano-oligo(phenyleneethynylene)s were synthesized by Pd cross-coupling reaction. Polycyano groups were found to greatly improve the emission efficiency (Phi(f)) of OPEs. By the end donor modification, we achieved the creation of very intense blue light-emitting fluorophore with the SMe group (Phi(f) = 0.972, log epsilon 4.89, lambda(em) 455 nm) and very intense yellow light-emitting fluorophore with the NMe(2) group (Phi(f) = 0.999, log epsilon 4.75, lambda(em) 555 nm). Contrasting Phi(f) solvent dependency of 6 and 7 and a linear relationship between Phi(f) and sigma(p)-X over the whole region of sigma(p)-X were also found.
To create the whole-rainbow-fluorophores (WRF) having the small Δλem (the difference of λem between a given fluorophore and nearest neighboring fluorophore having the same core skeleton) values (<20 nm) in full visible region (λem: 400-650 nm), the high log ε (>4.5), and the high Φf (>0.6), we investigated molecular design, synthesis, and light-emitting characteristics of the π-conjugated molecules (D/A-BPBs) consisting of 1,4-bis(phenylethynyl)benzene (BPB) modified by donor groups (OMe, SMe, NMe2, and NPh2) and an acceptor group (CN). As a result, synthesized 20 D/A-BPBs (1a-5d) were found to be the desired WRF. To get the intense red fluorophore (Φf> 0.7, λem > 610 nm), we synthesized new compounds (5e-5i) and elucidated their photophysical properties in CHCl3 solution. As a result, 5h, in which a 4-cyanophenyl group is introduced to the para-position of two benzene rings in the terminal NPh2 group of 5d, was found to be the desired intense red fluorophore (log ε = 4.56, Φf = 0.76, λem = 611 nm). The intramolecular charge-transfer nature of the S1 state of WRF (1a-5d) was elucidated by the positive linear relationship between optical transition energy (νem) from the S1 state to the S0 state and HOMO(D)-LUMO(A) difference, and the molecular orbitals calculated with the DFT method. It is demonstrated that our concept (Φf = 1/(exp(-Aπ) + 1)) connected with the relationship between Φf and magnitude (Aπ) of π conjugation length in the S1 state can be applied to WRF (1a-5d). It is suggested that the prediction of Φf from a structural model can be achieved by the equation Φf = 1/(exp(-((ν̃a - ν̃f)(1/2) × a(3/2)) + 1), where ν̃a and ν̃f are the wavenumber (cm(-1)) of absorption and fluorescence peaks, respectively, and a is the calculated molecular radius. From the viewpoint of application of WRF to various functional materials, the light-emitting characteristics of 1a-5i in doped polymer films were examined. It was demonstrated that 1a-5i dispersed in two kinds of polymer film (PST and PMMA) emit light at the whole visible region and have the small Δλem values (<20 nm) and the high Φf values (>0.6). Therefore, the present D/A-BPBs can be said to be the desired WRF even in the doped polymer film.
To create highly fluorescent organic compounds in longer wavelength regions, and to gain physical chemistry insight into the photophysical characteristics, we investigated photophysical properties (Phi(f), lambda(em), tau, lambda(abs), epsilon, k(r), and k(d)) and their controlling factor dependence of the following pi-conjugated molecular rods consisting of p-phenyleneethynylene units modified by donor (OMe) and/or acceptor (CN): (1) side-donor modification systems (SD systems), (2) side-acceptor modification systems (SA systems), and (3) systems consisting of donor block and acceptor block (BL systems). As a result, very high Phi(f) values (>0.95) were obtained for BL systems. Bathochromic shifts of lambd(em) in the same pi conjugation length were largest for BL systems. Thus we succeeded in the creation of highly efficient light emitters in the longer wavelength region by block modification (e.g., Phi(f) = 0.97, lambda(em) = 464 nm for BL-9), contrary to expectation from energy gap law. Considerably intense solid emission (Phi(f) approximately 0.5) in the longer wavelength region (500-560 nm) was also found for BL systems, presumably because of molecular orientation that hinders the self-quenching of fluorescence in solids. From (1) a Lippert-Mataga plot, (2) density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, and (3) the positive linear relationship between the optical transition energy (nu(em)) and the difference between the highest occupied molecular orbital of the donor and the lowest unoccupied molecular orbital of the acceptor (HOMO(D)-LUMO(A) difference), it is elucidated that the excited singlet (S1) state of BL systems has a high charge transfer nature. The number (n) of energetically equivalent dipolar structure (EEDS) units in the oligoarylene ethynylenes is shown to be a measure of the effective pi conjugation length in the S1 state. The S1 state planarity increases with n values of EEDS units and by the introduction of donor and/or acceptor groups. It is worth noting that the Phi(f) values increase linearly with the n values of EEDS units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.