Matrix metalloproteinases (MMPs) are tissue‐remodeling enzymes involved in the processing of various biological molecules. MMPs also play important roles in cancer metastasis, contributing to angiogenesis, intravasation of tumor cells, and cell migration and invasion. Accordingly, unraveling the signaling pathways controlling MMP activities could shed additional light on cancer biology. Here, we report a molecular axis, comprising the molecular adaptor hydrogen peroxide‐inducible clone‐5 (HIC‐5), NADPH oxidase 4 (NOX4), and mitochondria‐associated reactive oxygen species (mtROS), that regulates MMP9 expression and may be a target to suppress cancer metastasis. We found that this axis primarily downregulates mtROS levels which stabilize MMP9 mRNA. Specifically, HIC‐5 suppressed the expression of NOX4, the source of the mtROS, thereby decreasing mtROS levels and, consequently, destabilizing MMP9 mRNA. Interestingly, among six cancer cell lines, only EJ‐1 and MDA‐MB‐231 cells exhibited upregulation of NOX4 and MMP9 expression after shRNA‐mediated HIC‐5 knockdown. In these two cell lines, activating RAS mutations commonly occur, suggesting that the HIC‐5–mediated suppression of NOX4 depends on RAS signaling, a hypothesis that was supported experimentally by the introduction of activated RAS into mammary epithelial cells. Notably, HIC‐5 knockdown promoted lung metastasis of MDA‐MB‐231 cancer cells in mice. The tumor growth of HIC‐5–silenced MDA‐MB‐231 cells at the primary sites was comparable to that of control cells. Consistently, the invasive properties of the cells, but not their proliferation, were enhanced by the HIC‐5 knockdown in vitro. We conclude that NOX4‐mediated mtROS signaling increases MMP9 mRNA stability and affects cancer invasiveness but not tumor growth.
The positive rates of dermatophytes isolated and identified by conventional methods are rather low. Moreover, clinical isolates sometimes show atypical morphology, and in such cases microscopic methods are not applicable for identification. The present study was performed to assess the utility of specific polymerase chain reaction (PCR)-based methods for Trichophyton rubrum and Trichophyton mentagrophytes as diagnostic tools for dermatophytoses. Both conventional morphological identification and specific PCR methods based on the nuclear ribosomal internal transcribed spacer (ITS)1 DNA sequence were performed to identify dermatophyte species from clinical specimens of patients who visited Kawasaki Social Insurance Hospital between 16 May and 17 August 2005. Specific PCR methods were also directly applied to clinical specimens, and the results of the two methods were compared. The clinical samples examined consisted of 126 skin scale specimens and 80 nail specimens. The positive rates of culture isolation from clinical specimens were 67% and 33% for skin scale and nail specimens, respectively. In contrast, PCR analysis yielded a positive rate of 100% for clinical isolates from both skin scales and nails, and rates of 95% and 99% were obtained by direct application to clinical specimens. The results of the present study indicated that specific PCR is highly advantageous as a diagnostic tool for detection and identification of dermatophytes on direct application to skin scale or nail specimens.
Mitochondria are considered to play an important role in oxidative stress response since they are a source of reactive oxygen species and are also targeted by these species. This study examined the mitochondrial conditions in cells of epithelial origin that were exposed to H(2)O(2) and found a decline in the membrane potential along with a specific loss of UQCRC1, a sub-unit of complex III, suggesting that mitochondrial dysfunction occurs upon exposure to oxidative stress. This observation led to the hypothesis that certain cellular responses to oxidative stress occurred because of mitochondrial dysfunction. When mitochondria-less (pseudo ρ0) cells were examined as a model of mitochondrial dysfunction, striking similarities were found in their cellular responses compared with those found in cells exposed to oxidative stress, including changes in gene expression and gelatinolytic enzyme activities, thus suggesting that cellular responses to oxidative stress were partly mediated by mitochondrial dysfunction. This possibility was further validated by microarray analysis, which suggested that almost one-fourth of the cellular responses to oxidative stress were mediated by mitochondrial dysfunction that accompanies oxidative stress, thereby warranting a therapeutic strategy that targets mitochondria for the treatment of oxidative stress-associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.