Tumor oncogenes include transcription factors that co-opt the general transcriptional machinery to sustain the oncogenic state 1 , but direct pharmacological inhibition of transcription factors has thus far proven difficult 2 . However, the transcriptional machinery contains various enzymatic co-factors that can be targeted for development of new therapeutic candidates 3 , including cyclin-dependent kinases (CDKs) 4 . Here we present the discovery and characterization of the first covalent CDK7 inhibitor, THZ1, which has the unprecedented ability to target a remote cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7. Cancer cell line profiling indicates that a subset of cancer cell lines, including T-ALL, exhibit exceptional sensitivity to THZ1. Genome-wide analysis in Jurkat T-ALL shows that THZ1 disproportionally affects transcription of RUNX1 and suggests that sensitivity to THZ1 may be due to vulnerability conferred by the RUNX1 super-enhancer and this transcription factor’s key role in the core transcriptional regulatory circuitry of these tumor cells. Pharmacological modulation of CDK7 kinase activity may thus provide an approach to identify and treat tumor types exhibiting extreme dependencies on transcription for maintenance of the oncogenic state.
Neuroblastoma, an embryonal tumor of the peripheral sympathetic nervous system, accounts for approximately 15% of all deaths due to childhood cancer1. High-risk neuroblastomas, prevalent in the majority of patients, are rapidly progressive; even with intensive myeloablative chemotherapy, relapse is common and almost uniformly fatal2,3. Here we report the detection of previously unknown mutations in the ALK gene, which encodes a receptor tyrosine kinase, in 8% of primary neuroblastomas. Five non-synonymous sequence variations were identified in the kinase domain of ALK, of which three were somatic and two were germline. The most frequent mutation, F1174L, was also identified in three different neuroblastoma cell lines. ALK cDNAs encoding the F1174L and R1275Q variants, but not the wild-type ALK cDNA, transformed IL-3-dependent murine hematopoietic Ba/F3 cells to cytokine-independent growth. Ba/F3 cells expressing these mutations were sensitive to a small-molecule inhibitor of ALK, TAE6844. Furthermore, two human neuroblastoma cell lines harboring the F1174L mutation were sensitive to the inhibitor. Cytotoxicity was associated with increased levels of apoptosis as measured by TUNEL-labeling. shRNA-mediated knockdown of ALK expression in neuroblastoma cell lines with the F1174L mutation also resulted in apoptosis and impaired cell proliferation. Thus, activating alleles of the ALK receptor tyrosine kinase are present in primary neuroblastoma tumors and in established neuroblastoma cell lines, and confer sensitivity to ALK inhibition with small molecules, providing a molecular rationale for targeted therapy of this disease.
In certain human cancers, the expression of critical oncogenes is driven from large regulatory elements, called super-enhancers, which recruit much of the cell’s transcriptional apparatus and are defined by extensive acetylation of histone H3 lysine 27 (H3K27ac). In a subset of T-cell acute lymphoblastic leukemia (T-ALL) cases, we found that heterozygous somatic mutations are acquired that introduce binding motifs for the MYB transcription factor in a precise noncoding site, which creates a super-enhancer upstream of the TAL1 oncogene. MYB binds to this new site and recruits it’s H3K27 acetylase binding partner CBP, as well as core components of a major leukemogenic transcriptional complex that contains RUNX1, GATA-3, and TAL1 itself. Additionally, most endogenous super-enhancers found in T-ALL cells are occupied by MYB and CBP, suggesting a general role for MYB in super-enhancer initiation. Thus, this study identifies a genetic mechanism responsible for the generation of oncogenic super-enhancers in malignant cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.