Phototropins are blue-light (BL) receptor serine (Ser)/threonine kinases, and contain two light, oxygen, and voltage (LOV) domains, and are members of the PAS domain superfamily. They mediate phototropism, chloroplast movement, leaf expansion, and stomatal opening of higher plants in response to BL. In stomatal guard cells, genetic analysis has revealed that phototropins mediate activation of the plasma membrane H ϩ -ATPase by phosphorylation and drive stomatal opening. However, biochemical evidence for the involvement of phototropins in the BL response of stomata is lacking. Using guard cell protoplasts, we showed that broad bean (Vicia faba) phototropins (Vfphots) were phosphorylated by BL, and that this phosphorylation of Vfphots reached to the maximum level earlier than that of the H ϩ -ATPase. Phosphorylation of both Vfphots and H ϩ -ATPase showed similar sensitivity to BL and were similarly suppressed by protein kinase and flavoprotein inhibitors. We found that a 14-3-3 protein was bound to Vfphots upon phosphorylation, and this binding occurred earlier than the H ϩ -ATPase phosphorylation. Vfphots (Vfphot1a and Vfphot1b) were expressed in Escherichia coli, and phosphorylation sites were determined to be Ser-358 for Vfphot1a and Ser-344 for Vfphot1b, which are localized between LOV1 and LOV2. We conclude that Vfphots act as BL receptors in guard cells and that phosphorylation of a Ser residue between LOV1 and LOV2 and subsequent 14-3-3 protein binding are likely to be key steps of BL response in stomata. The binding of a 14-3-3 protein to Vfphot was found in etiolated seedlings and leaves in response to BL, suggesting that this event was common to phototropin-mediated responses.Stomatal pores surrounded by a pair of guard cells in the epidermis regulate gas exchange between leaves and the atmosphere and allow CO 2 entry for both photosynthesis and the transpirational stream in higher plants (Zeiger, 1983; Assmann, 1993). Stomata open through the activation of a H ϩ pump in guard cells in response to blue light (BL; Assmann et al., 1985; Shimazaki et al., 1986). The BL-activated pump creates an inside-negative, electrical potential across the plasma membrane and drives K ϩ uptake through voltage-gated K ϩ channels (Hedrich and Schroeder, 1989; Assmann and Shimazaki, 1999; Schroeder et al., 2001). The H ϩ pump has been demonstrated to be the plasma membrane H ϩ -ATPase and is activated via phosphorylation of its C terminus with concomitant binding of the 14-3-3 protein (Kinoshita and Shimazaki, 1999; Emi et al., 2001; Palmgren, 2001). Although physiological responses downstream of BL perception have been elucidated extensively in guard cells, the mechanism of BL perception itself, an initial event in the BL response of stomata, had yet to be elucidated. Recently, genetic analysis of Arabidopsis mutants strongly suggests that phototropins (Atphot1 and Atphot2) function as BL receptors in a redundant manner and mediate BL-dependent stomatal opening (Kinoshita et al., 2001), although the biochemical eviden...
Recent genetic analysis showed that phototropins (phot1 and phot2) function as blue light receptors in stomatal opening of Arabidopsis thaliana, but no biochemical evidence was provided for this. We prepared a large quantity of guard cell protoplasts from Arabidopsis. The immunological method indicated that phot1 was present in guard cell protoplasts from the wild-type plant and the phot2 mutant, that phot2 was present in those from the wild-type plant and the phot1 mutant, and that neither phot1 nor phot2 was present in those from the phot1 phot2 double mutant. However, the same amounts of plasma membrane H+-ATPase were found in all of these plants. H+ pumping was induced by blue light in isolated guard cell protoplasts from the wild type, from the single mutants of phototropins (phot1-5 and phot2-1), and from the zeaxanthin-less mutant (npq1-2), but not from the phot1 phot2 double mutant. Moreover, increased ATP hydrolysis and the binding of 14-3-3 protein to the H+-ATPase were found in response to blue light in guard cell protoplasts from the wild type, but not from the phot1 phot2 double mutant. These results indicate that phot1 and phot2 mediate blue light-dependent activation of the plasma membrane H+-ATPase and illustrate that Arabidopsis guard cell protoplasts can be useful for biochemical analysis of stomatal functions. We determined isogenes of the plasma membrane H+-ATPase and found the expression of all isogenes of functional plasma membrane H+-ATPases (AHA1-11) in guard cell protoplasts.
Phototropins (phot1 and phot2) are suggested to be multifunctional blue-light (BL) receptors mediating phototropism, chloroplast movement, stomatal opening, and leaf expansion. The Arabidpsis phot1 phot2 double mutant lacks all of these responses. To confirm the requirement of phototropins in BL responses, the Arabidopsis phot1 phot2 double mutant was transformed with PHOT1 cDNA and the phenotypic restoration was analysed in the transformants. It was found that all BL responses were restored, although differentially, by the transformation of the Arabidopsis phot1 phot2 double mutant with PHOT1 cDNA. The results showed that phot1 was an essential component for all these BL responses in planta, and that the cellular level of phot1 might determine the individual BL responses.
High-temperature effects on Photosystem II and plasma membranes, temperature dependence of growth, and acclimation to the growth temperature were studied in a mesophilic cyanobacterium, Synechocystis sp. PCC6803. The following results were obtained. (1) Small but distinct temperature acclimation of the PSII reaction center activity was shown for the first time when the activity was measured at inhibitory high temperatures. However, the reaction center activity showed no apparent acclimation when it was measured at growth temperatures after heat stress. (2) Oxygen-evolving activity and the permeability of plasma membranes showed higher resistance to heat when PCC6803 cells were grown at higher temperatures. (3) Acclimation of photosynthesis to the growth temperature seemed to occur so as to maintain photosynthesis activity not at a maximum level but in a certain range at the growth temperatures. (4) Neither sensitivity to high-temperature-induced dissociation of phycobilisomes from the PSII reaction center complexes nor degradation of phycocyanin were altered by changes in the environmental temperature. (5) A close relationship between the viability of cells and the structural changes of plasma membranes (but not the inactivation of photosynthesis) was observed. The denaturation process of PSII complexes and the relationship between the temperature dependence of the growth of Synechocystis PCC6803 cells and that of the photosynthetic activity are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.