We established a straightforward murine model of oropharyngeal candidiasis. Mice were immunosuppressed with cortisone acetate, anesthetized, and then inoculated by placing cotton wool balls saturated with Candida albicans sublingually for 2 h. A prolonged, reproducible infection was induced. This model may be useful for antifungal screening or pathogenesis studies.
Invasive infections caused by Candida krusei are a significant concern because this organism is intrinsically resistant to fluconazole. Voriconazole is more active than fluconazole against C. krusei in vitro. One mechanism of fluconazole resistance in C. krusei is diminished sensitivity of the target enzyme, cytochrome P450 sterol 14␣-demethylase (CYP51), to inhibition by this drug. We investigated the interactions of fluconazole and voriconazole with the CYP51s of C. krusei (ckCYP51) and fluconazole-susceptible Candida albicans (caCYP51). We found that voriconazole was a more potent inhibitor of both ckCYP51 and caCYP51 in cell extracts than was fluconazole. Also, the ckCYP51 was less sensitive to inhibition by both drugs than was caCYP51. These results were confirmed by expressing the CYP51 genes from C. krusei and C. albicans in Saccharomyces cerevisiae and determining the susceptibility of the transformants to voriconazole and fluconazole. We constructed homology models of the CYP51s of C. albicans and C. krusei based on the crystal structure of CYP51 from Mycobacterium tuberculosis. These models predicted that voriconazole is a more potent inhibitor of both caCYP51 and ckCYP51 than is fluconazole, because the extra methyl group of voriconazole results in a stronger hydrophobic interaction with the aromatic amino acids in the substrate binding site and more extensive filling of this site. Although there are multiple differences in the predicted amino acid sequence of caCYP51 and ckCYP51, the models of the two enzymes were quite similar and the mechanism for the relative resistance of ckCYP51 to the azoles was not apparent.Candida krusei is an opportunistic pathogen that can cause serious infections in immunocompromised patients (1, 6, 7). This organism is intrinsically resistant to fluconazole. The new triazole voriconazole has greater in vitro activity than fluconazole against C. krusei (5, 15). Two mechanisms of azole resistance in C. krusei have been described. Isolates of C. krusei that are resistant to itraconazole exhibit reduced drug accumulation, suggesting that resistance to this drug is due to the activity of one or more drug efflux pumps (29). Recently, two ATP binding cassette transporters have been identified in C. krusei. Increased expression of these transporters is associated with reduced susceptibility to miconazole (9).A second mechanism of azole resistance in C. krusei is diminished sensitivity of the target enzyme, cytochrome P450 sterol 14␣-demethylase (CYP51), to inhibition by an azole antifungal agent. We have determined previously that fluconazole resistance in some strains of C. krusei is mediated predominantly by this mechanism (17).In the present study, we cloned the full-length C. krusei CYP51 and examined its contribution to the differential sensitivity of C. krusei to fluconazole and voriconazole. We also used computer-assisted molecular modeling to examine the interactions of fluconazole and voriconazole with the predicted Candida albicans and C. krusei CYP51s. MATERIALS AND ME...
We investigated the contribution of Candida albicans ALS1, which encodes a candidal adhesin, to the pathogenesis of experimental murine oropharyngeal candidiasis. Our results indicate that the ALS1 gene product is important for the adherence of the organism to the oral mucosa during the early stage of the infection.
These results suggest that capuramycin analogues exhibit strong antimycobacterial potential and should be considered for further evaluation in the treatment of M. tuberculosis and M. avium-M. intracellulare complex infections in humans.
CS-023 (RO4908463, formerly R-115685) is a novel 1-methylcarbapenem with 5-substituted pyrrolidin-3-ylthio groups, including an amidine moiety at the C-2 position. Its antibacterial activity was tested against 1,214 clinical isolates of 32 species and was compared with those of imipenem, meropenem, ceftazidime, ceftriaxone, ampicillin, amikacin, and levofloxacin. CS-023 exhibited a broad spectrum of activity against gram-positive and -negative aerobes and anaerobes, including methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis, penicillin-resistant Streptococcus pneumoniae (PRSP), -lactamase-negative ampicillin-resistant Haemophilus influenzae, and Pseudomonas aeruginosa. CS-023 showed the most potent activity among the compounds tested against P. aeruginosa and MRSA, with MICs at which 90% of isolates tested were inhibited of 4 g/ml and 8 g/ml, respectively. CS-023 was stable against hydrolysis by the -lactamases from Enterobacter cloacae and Proteus vulgaris. CS-023 also showed potent activity against extended-spectrum -lactamase-producing Escherichia coli. The in vivo efficacy of CS-023 was evaluated with a murine systemic infection model induced by 13 strains of gram-positive and -negative pathogens and a lung infection model induced by 2 strains of PRSP (serotypes 6 and 19). Against the systemic infections with PRSP, MRSA, and P. aeruginosa and the lung infections, the efficacy of CS-023 was comparable to those of imipenem/cilastatin and vancomycin (tested against lung infections only) and superior to those of meropenem, ceftriaxone, and ceftazidime (tested against P. aeruginosa infections only). These results suggest that CS-023 has potential for the treatment of nosocomial bacterial infections by gram-positive and -negative pathogens, including MRSA and P. aeruginosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.