Itch is a common sensory experience that is prevalent in patients with inflammatory skin diseases, as well as in those with systemic and neuropathic conditions. In patients with these conditions, itch is often severe and significantly affects quality of life. Itch is encoded by 2 major neuronal pathways: histaminergic (in acute itch) and nonhistaminergic (in chronic itch). In the majority of cases, crosstalk existing between keratinocytes, the immune system, and nonhistaminergic sensory nerves is responsible for the pathophysiology of chronic itch. This review provides an overview of the current understanding of the molecular, neural, and immune mechanisms of itch: beginning in the skin, proceeding to the spinal cord, and eventually ascending to the brain, where itch is processed. A growing understanding of the mechanisms of chronic itch is expanding, as is our pipeline of more targeted topical and systemic therapies. Our therapeutic armamentarium for treating chronic itch has expanded in the last 5 years, with developments of topical and systemic treatments targeting the neural and immune systems.
Obesity is a serious health problem, and its prevention is promoted through life style including diet and exercise. In this study, we investigated the suppressive effects of tea catechin on the differentiation of 3T3-L1 preadipocytes to adipocytes. (-)-Catechin 3-gallate (CG), (-)-epigallocatechin (EGC), (-)-epicatechin 3-gallate, and (-)-epigallocatechin 3-gallate at 5 muM suppressed intracellular lipid accumulation. The suppressive effects of CG and EGC were stronger than the others, and CG and EGC also suppressed the activity of glycerol-3-phosphate dehydrogenase as a differentiation marker. These catechins inhibited the expression of peroxisome proliferator-activated receptor (PPAR) gamma2 and CCAAT/enhancer-binding protein (C/EBP) alpha, both of which act as key transcription factors at an early stage of differentiation, followed by the expression of glucose transporter (GLUT) 4 at a later stage. In addition, the catechins did not affect the phosphorylation status of the insulin signal pathway. Thus, catechin suppressed adipocyte differentiation accompanied by the down-regulation of PPARgamma2, C/EBPalpha, and GLUT4. These results suggest that tea catechin prevents obesity through the suppression of adipocyte differentiation.
The pharmacokinetics of dietary fucoxanthin, one of the xanthophylls in brown sea algae, is little understood. In the present study, mice were orally administered fucoxanthin, and the distribution and accumulation of fucoxanthin and its metabolites fucoxanthinol and amarouciaxanthin A were measured in the plasma, erythrocytes, liver, lung, kidney, heart, spleen and adipose tissue. In a single oral administration of 160 nmol fucoxanthin, fucoxanthinol and amarouciaxanthin A were detectable in all specimens tested in the present study, but fucoxanthin was not. The time at maximum concentration (T max ) of these metabolites in adipose tissue was 24 h, while the T max in the others was 4 h. The area under the curve to infinity (AUC 1 ) of fucoxanthinol in the liver was the highest value (4680 nmol/g £ h) among the tissues tested in the present study, while the AUC 1 of amarouciaxanthin A in adipose tissue was the highest value (4630 nmol/g £ h). In daily oral administration of 160 nmol fucoxanthin for 1 week, fucoxanthin was also detectable in the tissues even at a low concentration. The amount of fucoxanthinol was 123 nmol/g in the heart and 85·2 nmol/g in the liver. Amarouciaxanthin A in the adipose tissue was distributed at a concentration of 97·5 nmol/g. These results demonstrate that dietary fucoxanthin accumulates in the heart and liver as fucoxanthinol and in adipose tissue as amarouciaxanthin A. Fucoxanthin: Fucoxanthinol: Amarouciaxanthin A: MiceBrown algae are a traditional foodstuff of East Asians, and an epidemiological study (1) has shown that the consumption of brown sea algae is associated with a low risk of breast cancer. Brown alga powders or extracts have been reported to suppress chemical-induced carcinogenesis in animals (2 -5) . Fucoxanthin is one of the xanthophylls found in brown algae such as kombu (Laminaria japonica), hijiki (Sargassum fusiforme) and wakame (Undaria pinnatifida) (6) . The oral administration of fucoxanthin prevented carcinogenesis in several animal models (7,8) . Recent studies with cancer cell lines have suggested that the suppressive effect is due to the inhibitory effect of fucoxanthin on cell proliferation through the induction of apoptosis (9,10) and cell cycle arrest (11) . In addition to these activities, the compound also has anti-inflammatory and anti-obesity activities (12,13) . Interestingly, a recent study showed that dietary fucoxanthin stimulates the expression of uncoupling protein 1 in the mitochondria of white adipose tissue and facilitates the consumption of fats in rats (14) . Thus, fucoxanthin has various physiological activities and contributes to the beneficial effects of brown algae.Many studies (15 -20) have reported the metabolism of hydrocarbon carotenoids such as a-carotene and b-carotene; these carotenoids are absorbed in the small intestine and then converted to vitamin A. However, information on the metabolism of non-provitamin A-type carotenoids is insufficient to explain their bioavailability and safety, although some xanthophylls such as a...
A system for assessing the anti-inflammatory effect of food factors was developed by establishing a co-culture system with intestinal epithelial Caco-2 cells (apical side) and macrophage RAW264.7 cells (basolateral side). In this system, the stimulation of RAW264.7 cells with lipopolysaccharide was followed by a decrease in transepithelial electrical resistance, which is a marker of the integrity of the Caco-2 monolayer and an increase in TNF-alpha production from RAW264.7 cells and IL-8 mRNA expression in Caco-2 cells. Treatment with anti-TNF-alpha antibodies or budesonide suppressed in increase in TNF-alpha production and IL-8 mRNA expression. These results indicated that this co-culture model could imitate the gut inflammation in vivo. In addition, fucoidan, sulphated polysaccharides from brown algae, was employed as a candidate of evolution and added to the apical side of this model. Fucoidan suppressed IL-8 gene expression through a reduction in TNF-alpha production from RAW264.7 cells stimulated with lipopolysaccharide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.