Functional regulation of myoglobin (Mb) is thought to be achieved through the heme environment furnished by nearby amino acid residues, and subtle tuning of the intrinsic heme Fe reactivity. We have performed substitution of strongly electron-withdrawing perfluoromethyl (CF(3)) group(s) as heme side chain(s) of Mb to obtain large alterations of the heme electronic structure in order to elucidate the relationship between the O(2) affinity of Mb and the electronic properties of heme peripheral side chains. We have utilized the equilibrium constant (pK(a)) of the "acid-alkaline transition" in metmyoglobin in order to quantitatively assess the effects of the CF(3) substitutions for the electron density of heme Fe atom (rho(Fe)) of the protein. The pK(a) value of the protein was found to decrease by approximately 1 pH unit upon the introduction of one CF(3) group, and the decrease in the pK(a) value with decreasing the rho(Fe) value was confirmed by density functional theory calculations on some model compounds. The O(2) affinity of Mb was found to correlate well with the pK(a) value in such a manner that the P(50) value, which is the partial pressure of O(2) required to achieve 50% oxygenation, increases by a factor of 2.7 with a decrease of 1 pK(a) unit. Kinetic studies on the proteins revealed that the decrease in O(2) affinity upon the introduction of an electron-withdrawing CF(3) group is due to an increase in the O(2) dissociation rate. Since the introduction of a CF(3) group substitution is thought to prevent further Fe(2+)-O(2) bond polarization and hence formation of a putative Fe(3+)-O(2)(-)-like species of the oxy form of the protein [Maxwell, J. C.; Volpe, J. A.; Barlow, C. H.; Caughey, W. S. Biochem. Biophys. Res. Commun. 1974, 58, 166-171], the O(2) dissociation is expected to be enhanced by the substitution of electron-withdrawing groups as heme side chains. We also found that, in sharp contrast to the case of the O(2) binding to the protein, the CO association and dissociation rates are essentially independent of the rho(Fe) value. As a result, the introduction of electron-withdrawing group(s) enhances the preferential binding of CO to the protein over that of O(2). These findings not only resolve the long-standing issue of the mechanism underlying the subtle tuning of the intrinsic heme Fe reactivity, but also provide new insights into the structure-function relationship of the protein.
Myoglobin will be a good scaffold for engineering a function into proteins. To modulate the physiological function of myoglobin, almost all approaches have been demonstrated by site-directed mutagenesis, however, there are few studies which show a significant improvement in the function. In contrast, we focused on the replacement of heme in the protein with an artificial prosthetic group. Recently, we prepared a novel myoglobin reconstituted with an iron porphycene as a structural isomer of mesoheme. The bluish colored reconstituted myoglobin is relatively stable and the deoxymyoglobin reversibly binds ligands. Interestingly, the O2 affinity of the reconstituted myoglobin, 1.1 x 109 M-1, is a significant 1,400-fold higher than that of the native myoglobin. Furthermore, the unfavorable autoxidation kinetics show 7-fold decrease in rate for the reconstituted myoglobin relative to the native myoglobin, indicating the stable oxy-form against autoxidation. The net results come from the slow dissociation of the O2 ligand in the reconstituted myoglobin, koff = 0.11 s-1, because of the formation of strong hydrogen bond between His64 and negatively charged dioxygen. The present study indicates that the replacement of native heme with an artificially created prosthetic group will give us a unique function into a hemoprotein.
Pulp fibroblasts express various pro-inflammatory mediators leading to marked infiltration of inflammatory cells in the progression of pulpitis. We hypothesized that pulp fibroblasts play roles in the recognition of invaded caries-related bacteria and the subsequent innate immune responses. We found clear expressions of TLR2, NOD1, and NOD2 and a faint expression of TLR4 in human dental pulp fibroblasts (HDPF) by RT-PCR and flow cytometry. We also observed that various pro-inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostaglandin E(2) and its key enzyme COX-2, not iNOS or caspase-1, were markedly up-regulated by stimulation with these TLR and NOD agonists. More over, the NOD2 agonist acted synergistically with the TLR2, not the TLR4, agonist to stimulate the production of pro-inflammatory mediators in HDPF. These findings indicate that TLR2, TLR4, NOD2, and NOD1 in HDPF are functional receptors, and NOD2 is a modulator of signals transmitted through TLR2 in pulpal immune responses, leading to progressive pulpitis.
A series of sulfonated polyimide copolymers (FSPIH-X; X refers to molar percentage of bis(trifluoromethyl)biphenylene content) with X from 0 to 60 mol % were synthesized, of which electrolyte properties were investigated and compared to those of the perfluorinated ionomer (Nafion 112). FSPIH-X membranes are thermally stable with no glass transition temperature observed below the decomposition temperature (280 °C). Oxidative stability of the membranes is improved with an increase in the content of trifluoromethyl substituents in the copolymer structure. FSPIH-60 endured for more than 9 h in Fenton's reagent at 80 °C. Bis(trifluoromethyl)biphenylene groups with the molecular size of 6.1 Å make each polymer chain separate and produce space to hold water molecules despite their hydrophobic property so that the maximum water uptake was observed for FSPIH-20. Unlike the fluorene groups containing polyimides (SPIH-X), a strong water confinement effect was not obtained for FSPIH-X. The optimum composition of bis(trifluoromethyl)biphenylene groups was 30 mol %, and the FSPIH-30 membrane showed higher proton conductivity than 0.2 S cm-1 at 30−140 °C. A direct methanol fuel cell (DMFC) using FSPIH-30 membrane has revealed that the methanol crossover through the membrane equivalent to the current density of methanol oxidation at cathode (j(CH3OH)) is 64 mA/cm2 and merely 30% of that of Nafion 112 at open-circuit potential. A terminal voltage of 0.38 V was obtained at 200 mA/cm2 by the operation at 80 and 90 °C with supplying dry and humidified oxygen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.