The authors present an optically based method combining photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid. The frequency spectrum of a silicon cantilever measured in water over frequencies ranging up to 10 MHz shows that the method allows us to excite and detect higher modes, from fundamental to fifth flexural, without enhancing spurious resonances. By reducing the tip oscillation amplitude using higher modes, the average tip-sample force gradient due to chemical bonds is effectively increased to achieve high-spatial-resolution imaging in liquid. The method's performance is demonstrated by atomic resolution imaging of a mica surface in water obtained using the second flexural mode with a small tip amplitude of 99 pm; individual atoms on the surface with small height differences of up to 60 pm are clearly resolved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.