New growth in the vascular network is important since the proliferation, as well as metastatic spread, of cancer cells depends on an adequate supply of oxygen and nutrients and the removal of waste products. New blood and lymphatic vessels form through processes called angiogenesis and lymphangiogenesis, respectively. Angiogenesis is regulated by both activator and inhibitor molecules. More than a dozen different proteins have been identified as angiogenic activators and inhibitors. Levels of expression of angiogenic factors reflect the aggressiveness of tumor cells. The discovery of angiogenic inhibitors should help to reduce both morbidity and mortality from carcinomas. Thousands of patients have received antiangiogenic therapy to date. Despite their theoretical efficacy, antiangiogeic treatments have not proved beneficial in terms of long-term survival. There is an urgent need for a new comprehensive treatment strategy combining antiangiogenic agents with conventional cytoreductive treatments in the control of cancer.
Connective tissue growth factor (CTGF) is a novel cysteine-rich, secreted protein. Recently, we found that inhibition of the endogenous expression of CTGF by its antisense oligonucleotide and antisense RNA suppresses the proliferation and migration of vascular endothelial cells. In the present study, the following observations demonstrated the angiogenic function of CTGF in vitro and in vivo: (i) purified recombinant CTGF (rCTGF) promoted the adhesion, proliferation and migration of vascular endothelial cells in a dose-dependent manner under serum-free conditions, and these effects were inhibited by anti-CTGF antibodies; (ii) rCTGF markedly induced the tube formation of vascular endothelial cells, and this effect was stronger than that of basic fibroblast growth factor or vascular endothelial growth factor; (iii) application of rCTGF to the chicken chorioallantoic membrane resulted in a gross angiogenic response, and this effect was also inhibited by anti-CTGF antibodies. (iv) rCTGF injected with collagen gel into the backs of mice induced strong angiogenesis in vivo. These findings indicate that CTGF is a novel, potent angiogenesis factor which functions in multi-stages in this process.
Abstract. Connective tissue growth factor (CTGF/CCN2) is one of the candidate factors mediating fibrogenic activity of TGF-. It was shown previously that the blockade of CTGF by antisense oligonucleotide (ODN) inhibits TGF--induced production of fibronectin and type I collagen in cultured renal fibroblasts. The in vivo contribution of CTGF in renal interstitial fibrosis, however, remains to be clarified. With the use of a hydrodynamics-based gene transfer technique, the effects of CTGF antisense ODN are investigated in rat kidneys with unilateral ureteral obstruction (UUO). FITC-labeled ODN injection via the renal vein showed that the ODN was specifically introduced into the interstitium. At day 7 after UUO, the gene expression of CTGF, fibronectin, fibronectin ED-A, and ␣1(I) collagen in untreated or control ODN-treated obstructed kidneys was prominently upregulated. CTGF antisense ODN treatment, by contrast, markedly attenuated the induction of CTGF, fibronectin, fibronectin ED-A, and ␣1(I) collagen genes, whereas TGF- gene upregulation was not affected. The antisense treatment also reduced interstitial deposition of CTGF, fibronectin ED-A, and type I collagen and the interstitial fibrotic areas. The number of myofibroblasts determined by the expression of ␣-smooth muscle actin was significantly decreased as well. Proliferation of tubular and interstitial cells was not altered with the treatment. These findings indicate that CTGF expression in the interstitium plays a crucial role in the progression of interstitial fibrosis but not in the proliferation of tubular and interstitial cells during UUO.
Connective tissue growth factor/hypertrophic chondrocyte-specific gene product 24 (CTGF/Hcs24) is a multifunctional growth factor for chondrocytes, osteoblasts, and vascular endothelial cells. CTGF/Hcs24 promotes the proliferation and maturation of growth cartilage cells and articular cartilage cells in culture and hypertrophy of growth cartilage cells in culture. The factor also stimulates the proliferation and differentiation of cultured osteoblastic cells. Moreover, CTGF/ Hcs24 promotes the adhesion, proliferation, and migration of vascular endothelial cells, as well as induces tube formation by the cells and strong angiogenesis in vivo. Because angiogenesis is critical for the replacement of cartilage with bone at the final stage of endochondral ossification and because gene expression of CTGF/ Hcs24 predominates in hypertrophic chondrocytes in the physiological state, a major physiological role for this factor should be the promotion of the entire process of endochondral ossification, with the factor acting on the above three types of cells as a paracrine factor. Thus, CTGF/Hcs24 should be called ''ecogenin: endochondral ossification genetic factor.'' In addition to hypertrophic chondrocytes, osteoblasts activated by various stimuli including wounding also express a significantly high level of CTGF/Hcs24. These findings in conjunction with in vitro findings about osteoblasts mentioned above suggest the involvement of CTGF/Hcs24 in intramembranous ossification and bone modeling/remodeling. Because angiogenesis is also critical for intramembranous ossification and bone remodeling, CTGF/ Hcs24 expressed in endothelial cells activated by various stimuli including wounding may also play important roles in direct bone formation. In conclusion, although the most important physiological role of CTGF/Hcs24 is ecogenin action, the factors also play important roles in skeletal growth and modeling/remodeling via its direct action on osteoblasts under both physiological and pathological conditions.
CTGF/CCN2, a hypertrophic chondrocyte-specific gene product, possessed the ability to repair damaged articular cartilage in two animal models, which were experimental osteoarthritis and full-thickness defects of articular cartilage. These findings suggest that CTGF/CCN2 may be useful in regeneration of articular cartilage.Introduction: Connective tissue growth factor (CTGF)/CCN2 is a unique growth factor that stimulates the proliferation and differentiation, but not hypertrophy, of articular chondrocytes in vitro. The objective of this study was to investigate the therapeutic use of CTGF/CCN2. Materials and Methods:The effects of recombinant CTGF/CCN2 (rCTGF/CCN2) on repair of damaged cartilage were evaluated by using both the monoiodoacetic acid (MIA)-induced experimental rat osteoarthritis (OA) model and full-thickness defects of rat articular cartilage in vivo. Results: In the MIA-induced OA model, quantitative real-time RT-PCR assays showed a significant increase in the level of CTGF/CCN2 mRNA, and immunohistochemical analysis and in situ hybridization revealed that the clustered chondrocytes, in which clustering indicates an attempt to repair the damaged cartilage, produced CTGF/CCN2. Therefore, CTGF/CCN2 was suspected to play critical roles in cartilage repair. In fact, a single injection of rCTGF/CCN2 incorporated in gelatin hydrogel (rCTGF/CCN2-hydrogel) into the joint cavity of MIA-induced OA model rats repaired their articular cartilage to the extent that it became histologically similar to normal articular cartilage. Next, to examine the effect of rCTGF/CCN2 on the repair of articular cartilage, we created defects (2 mm in diameter) on the surface of articular cartilage in situ and implanted rCTGF/CCN2-hydrogel or PBS-hydrogel therein with collagen sponge. In the group implanted with rCTGF/CCN2-hydrogel collagen, new cartilage filled the defect 4 weeks postoperatively. In contrast, only soft tissue repair occurred when the PBS-hydrogel collagen was implanted. Consistent with these in vivo effects, rCTGF/CCN2 enhanced type II collagen and aggrecan mRNA expression in mouse bone marrow-derived stromal cells and induced chondrogenesis in vitro. Conclusion: These findings suggest the utility of CTGF/CCN2 in the regeneration of articular cartilage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.