High uptake of 18F-FDG would be predictive of poor prognosis in patients with primary breast cancer, and aggressive features of cancer cells in patients with early breast cancer. 18F-FDG PET/CT could be a useful tool to pre-therapeutically predict biological characteristics and baseline risk of breast cancer.
Background:Eribulin mesylate (eribulin) is a first-in-class halichondrin B-based microtubule dynamics inhibitor. To compare the anti-angiogenic activity of eribulin to that of bevacizumab, we compared tumour vessel remodelling and reoxygenation between the two agents.Methods:Patients with advanced breast cancer with stage III/IV were eligible for the study. Patients were assigned to receive either eribulin or single-agent bevacizumab. Tissue concentrations of oxyhaemoglobin (O2Hb) and deoxyhaemoglobin (HHb), and oxygen saturation (SO2) of breast tumours before and day 7 after the first infusion were repeatedly measured using diffuse optical spectroscopic imaging (DOSI). A pair of blood samples was collected for multiplex biomarker studies.Results:Baseline DOSI measurement of all 29 patients (eribulin, n=14 and bevacizumab, n=15) revealed significantly higher tumour concentrations of O2Hb and HHb than that in the normal breast tissue. After eribulin treatment, DOSI revealed a significant decrease in HHb concentration and increased SO2 during the observation period. This trend was not observed for bevacizumab. Instead, bevacizumab significantly decreased the concentration of O2Hb. The multiplex biomarker study revealed that both eribulin and bevacizumab decreased plasma concentrations of VEGF and bFGF, but only eribulin treatment suppressed the plasma concentration of TGF-β1.Conclusions:Eribulin, but not bevacizumab, treatment increased tumour SO2. Suppression of TGF-β1 by eribulin could have a favourable anti-angiogenic effect. Our results suggest that differences in vascular remodelling between these two agents may account for their different effects on tumour reoxygenation.
Breast cancer is a hormone-dependent cancer and usually treated with endocrine therapy using aromatase inhibitors or anti-estrogens such as tamoxifen. A majority of breast cancer, however, will often fail to respond to endocrine therapy. In the present study, we explored miRNAs associated with endocrine therapy resistance in breast cancer. High-throughput miRNA sequencing was performed using RNAs prepared from breast cancer MCF-7 cells and their derivative clones as endocrine therapy resistant cell models, including tamoxifen-resistant (TamR) and long-term estrogen-deprived (LTED) MCF-7 cells. Notably, miR-21 was the most abundantly expressed miRNA in MCF-7 cells and overexpressed in TamR and LTED cells. We found that miR-378a-3p expression was downregulated in TamR and LTED cells as well as in clinical breast cancer tissues. Additionally, lower expression levels of miR-378a-3p were associated with poor prognosis for tamoxifen-treated patients with breast cancer. GOLT1A was selected as one of the miR-378a-3p candidate target genes by in silico analysis. GOLT1A was overexpressed in breast cancer specimens and GOLT1A-specific siRNAs inhibited the growth of TamR cells. Low GOLT1A levels were correlated with better survival in patients with breast cancer. These results suggest that miR-378a-3p-dependent GOLT1A expression contributes to the mechanisms underlying breast cancer endocrine resistance.
Breast cancer is primarily a hormone-dependent tumor that can be regulated by the status of steroid hormones, including estrogen and progesterone. Forkhead box P1 (FOXP1) is a member of the forkhead box transcription factor family and has been reported to be associated with various types of tumors. In the present study, we investigated the expression of FOXP1 in 133 human invasive breast cancers, obtained by core biopsy, by immunohistochemical analysis. Nuclear immunoreactivity of FOXP1 was detected in 89 cases (67%) and correlated positively with tumor grade and hormone receptor status, including estrogen receptor alpha (ERα) and progesterone receptor, and negatively with pathological tumor size. In ERα-positive MCF-7 breast cancer cells, we demonstrated that FOXP1 mRNA was upregulated by estrogen and increased ERα recruitment to ER binding sites identified by ChIP-on-chip analysis within the FOXP1 gene region. We also demonstrated that proliferation of MCF-7 cells was increased by exogenously transfected FOXP1 and decreased by FOXP1-specific siRNA. Furthermore, FOXP1 enhanced estrogen response element-driven transcription in MCF-7 cells. Finally, FOXP1 immunoreactivity was sig-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.