Vector analyzing power for the proton-6 He elastic scattering at 71 MeV/nucleon has been measured for the first time, with a newly developed polarized proton solid target working at low magnetic field of 0.09 T. The results are found to be incompatible with a t-matrix folding model prediction. Comparisons of the data with g-matrix folding analyses clearly show that the vector analyzing power is sensitive to the nuclear structure model used in the reaction analysis. The α-core distribution in 6 He is suggested to be a possible key to understand the nuclear structure sensitivity. PACS numbers: 24.70.+s, 29.25.Pj Spin observables in scattering experiments have been rich sources of our understanding of nuclear structure, reaction, and interactions. One of the good examples is spin asymmetry in proton-proton and proton-nucleus (p-A) scatterings which is a direct manifestation of spinorbit coupling in the system. The first spin asymmetry measurements carried out by use of a double scattering method [1,2] clearly demonstrated that the spin-orbit coupling in nuclei is an order of magnitude stronger than that due to the relativistic effect [3]. At present the spin-orbit coupling in p-A scattering is quantitatively established through numerous experiments using polarized proton beams for stable targets.It is interesting to use spin asymmetry measurements to study unstable nuclei. Nuclei locating near the neutron drip line occasionally show distinctive structure such as halos or skins. The neutron rich 6 He nucleus is one of the typical nuclides with an extended neutron distribution. Since the extended neutron distribution is prominent at the nuclear surface and the spin-orbit coupling is, in nature, a surface phenomenon, it is stimulating to see how the extended neutron distributions affect the spin asymmetry, i.e., vector analyzing power in proton elastic scattering.In this Letter, we report new results of vector analyzing power for the p-6 He elastic scattering at 71 MeV/nucleon, measured with a newly developed polarized proton target. The results are compared with microscopic folding model calculations.Although cross sections in proton elastic scattering from 6 He have been extensively measured over a wide range of energies [4][5][6][7][8][9], until recently there had been no measurement of vector analyzing power. Since unstable nuclei are produced as secondary beams, we need a polarized proton target, practically in the solid state, for the spin-asymmetry studies. In addition, the solid polarized proton target should work under a low magnetic field of B ∼ 0.1 T for detection of recoiled protons with magnetic rigidity as low as 0.3 Tm. The traditional dynamical nuclear polarization technique [10], demanding a magnetic field higher than a few Tesla, can not be applied therefore. Although this difficulty might be overcome by applying a "spin frozen" operation, efforts to do so have not been successful so far. An alternative approach to overcome the problem is to develop a polarized target based on a new principle which...
A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive (11)C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.
Thin solid oxide fuel cells (SOFCs), with a planar multi‐layer structure, typically exhibit curvature behavior and develop residual stresses originating from the thermal mismatch of the materials involved. The curvature effects oppose successful stack operation, which also relies on the permanent physical contact of geometrically stable planar cells. Curvature studies have been carried out as part of the project “Component Reliability in Solid Oxide Fuel Cell Systems for Commercial Operation” (CORE‐SOFC). Various aspects of the curvature of unconstrained cells and cells fixed in stacks were considered. The experiments and theoretical analyses included the curvature changes due to anode reduction and the suppression of cell curvature, either by a compensation layer or by an additional surface load. The critical stresses in the layers are addressed and results are reported for different cell thicknesses and lengths. Cell flatness can be achieved with a compensation layer but the average residual tensile stress in the anode increases. On the other hand finite element analysis (FEA) indicates that relatively high loads are necessary to completely suppress cell curvature. Furthermore, analytical and FEA results on the curvature changes of sealed cells during cooling are presented and the impact of variations in sealing geometry is illustrated. The results are compared to in‐situ observations of model stacks, where curvature and strain are analyzed using image correlation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.