Prolonged running results in lowering of the foot arch and a low arch is associated with subsequent chronic injuries. Foot posture alteration and recovery following a marathon run remain unknown. Therefore, the present study aimed to evaluate foot posture alteration following a full marathon run. The three-dimensional foot posture data of 11 collegiate runners were obtained using an optical foot scanner system before, and immediately, 1 day, 3 days, and 8 days after a full marathon. The navicular height and arch height ratio significantly decreased from before to immediately, 1 day, 3 days, and 8 days after the marathon (navicular height: before, 44.2 ± 5.0 mm; immediately after, 39.4 ± 5.5 mm; 1 day, 37.7 ± 6.2 mm; 3 days, 38.7 ± 5.5 mm; 8 days, 37.6 ± 5.7 mm; arch height ratio: before, 18.4 ± 1.9; immediately after, 16.5 ± 2.5; 1 day, 15.7 ± 2.5; 3 days, 16.2 ± 2.6; 8 days, 15.6 ± 2.2, P < 0.001, respectively). By contrast, the dorsal height significantly increased from before and immediately after to 1 day after the marathon, and then significantly decreased until 8 days after the marathon (P < 0.001). These results indicate that the recovery patterns of the dorsal and navicular heights following a marathon did not coincide; the dorsal height rose temporally at 1 day after and subsequently decreased, but the navicular height decreased throughout the 8-day period after the marathon. More than one week may be necessary for sufficient foot alignment recovery from marathon-induced changes.
Previous studies suggest that marathon running induces lower extremity muscle damage. This study aimed to examine inter-and intramuscular differences in hamstring muscle damage after a marathon using transverse relaxation time (T 2)-weighted magnetic resonance images (MRI). 20 healthy collegiate marathon runners (15 males) were recruited for this study. T 2-MRI was performed before (PRE) and at 1 (D1), 3 (D3), and 8 days (D8) after marathon, and the T 2 values of each hamstring muscle at the distal, middle, and proximal sites were calculated. Results indicated that no significant intermuscular differences in T 2 changes were observed and that, regardless of muscle, the T 2 values of the distal and middle sites increased significantly at D1 and D3 and recovered at D8, although those values of the proximal site remained constant. T 2 significantly increased at distal and middle sites of the biceps femoris long head on D1 (p = 0.030 and p = 0.004, respectively) and D3 (p = 0.007 and p = 0.041, respectively), distal biceps femoris short head on D1 (p = 0.036), distal semitendinosus on D1 (p = 0.047) and D3 (p = 0.010), middle semitendinosus on D1 (p = 0.005), and distal and middle sites of the semimembranosus on D1 (p = 0.008 and p = 0.040, respectively) and D3 (p = 0.002 and p = 0.018, respectively). These results suggest that the distal and middle sites of the hamstring muscles are more susceptible to damage induced by running a full marathon. Conditioning that focuses on the distal and middle sites of the hamstring muscles may be more useful in improving recovery strategies after prolonged running.
Our results suggest that shoulder flexibility is important for preventing LBP in elite-male junior divers, since they require full shoulder flexion during the water entry phase. Limited shoulder flexibility could cause lumbar hyperextension when adjusting for the angle of water entry.
We recently reported that wearing unstable rocker shoes (Masai Barefoot Technology: MBT) may enhance recovery from marathon race-induced fatigue. However, this earlier study only utilized a questionnaire. In this study, we evaluated MBT utilizing objective physiological measures of recovery from marathon-induced muscle damages. Twenty-five university student novice runners were divided into two groups. After running a full marathon, one group wore MBT shoes (MBT group), and the control group (CON) wore ordinary shoes daily for 1 week following the race. We measured maximal isometric joint torque, muscle hardness (real time tissue elastography of the strain ratio) in the lower limb muscles before, immediately after, and 1, 3, and 8 days following the marathon. We calculated the magnitude of recovery by observing the difference in each value between the first measurement and the latter measurements. Results showed that isometric torques in knee flexion recovered at the first day after the race in the MBT group while it did not recover even at the eighth day in the CON group. Muscle hardness in the gastrocnemius and vastus lateralis showed enhanced recovery in the MBT group in comparison with the CON group. Also for muscle hardness in the tibialis anterior and biceps femoris, the timing of recovery was delayed in the CON group. In conclusion, wearing MBT shoes enhanced recovery in lower leg and thigh muscles from muscle damage induced by marathon running.
We sought to identify changes in individual muscle hardness after a full marathon and to track time-dependent changes using ultrasound strain elastography (SE). Twenty-one collegiate marathon runners were recruited. Muscle hardness (i.e., strain ratio, SR) was measured using SE for the rectus femoris (RF), vastus lateralis (VL), biceps femoris long head (BF), tibialis anterior (TA), gastrocnemius medial head (GM), and soleus (SOL) muscles at the following time points: pre (PRE), immediately post (POST), day-1 (D1), day-3 (D3), and day-8 (D8), after a full marathon. We found that the SR decreased after the full marathon (i.e., the muscle became harder), and that the lowest SR across all measured muscles was observed on D1. Although there was no difference in the magnitude of change in SR between the muscles of the thigh, that of the MG and SOL were significantly larger than that of the TA. Muscle hardness in the VL, BF, and SOL recovered at D8 (i.e., non-significant difference from PRE), whereas recovery of RF and GM hardness at D8 was not observed. Thus, the degree of change in muscle hardness does not occur uniformly within the lower extremity muscles. In particular, changes in muscle hardness of the TA after a full marathon is small compared with other muscles and time-dependent changes in each muscle varies during recovery. The features of muscle hardness identified in this study will be useful for coaches when mentoring runners on proper forms and for training advisers and therapists who seek to address deficiencies in running.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.