Spreading dynamics has been considered to take place in temporal networks, where temporal interaction patterns between nodes show non-Poissonian bursty nature. The effects of inhomogeneous interevent times (IETs) on the spreading have been extensively studied in recent years, yet little is known about the effects of correlations between IETs on the spreading. In order to investigate those effects, we study two-step deterministic susceptible-infected (SI) and probabilistic SI dynamics when the interaction patterns are modeled by inhomogeneous and correlated IETs, i.e., correlated bursts. By analyzing the transmission time statistics in a single-link setup and by simulating the spreading in Bethe lattices and random graphs, we conclude that the positive correlation between IETs slows down the spreading. We also argue that the shortest transmission time from one infected node to its susceptible neighbors can successfully explain our numerical results.
We evaluate the efficiency of various heuristic strategies for allocating vaccines against COVID-19 and compare them to strategies found using optimal control theory. Our approach is based on a mathematical model which tracks the spread of disease among different age groups and across different geographical regions, and we introduce a method to combine age-specific contact data to geographical movement data. As a case study, we model the epidemic in the population of mainland Finland utilizing mobility data from a major telecom operator. Our approach allows to determine which geographical regions and age groups should be targeted first in order to minimize the number of deaths. In the scenarios that we test, we find that distributing vaccines demographically and in an age-descending order is not optimal for minimizing deaths and the burden of disease. Instead, more lives could be saved by using strategies which emphasize high-incidence regions and distribute vaccines in parallel to multiple age groups. The level of emphasis that high-incidence regions should be given depends on the overall transmission rate in the population. This observation highlights the importance of updating the vaccination strategy when the effective reproduction number changes due to the general contact patterns changing and new virus variants entering.
We study the collective dynamics of repulsive self-propelled particles. The particles are governed by coupled equations of motion that include polar self-propulsion, damping of velocity and of polarity, repulsive particle-particle interaction, and deterministic dynamics. Particle dynamics simulations show that the collective coherent motion with large density fluctuations spontaneously emerges from a disordered, isotropic state. In the parameter region where the rotational damping of polarity is strong, the systems undergoes an abrupt shift to the absorbing ordered state after a waiting period in the metastable disordered state. In order to obtain a simple understanding of the mechanism underlying the collective behavior, we analyze binary particle scattering process. We show that this approach correctly predicts the order-disorder transition at dilute limit. The same approach is expanded for finite densities, although it disagrees with the result from many-particle simulations due to many-body correlations and density fluctuations.
Dynamical processes in various natural and social phenomena have been described by a series of events or event sequences showing non-Poissonian, bursty temporal patterns. Temporal correlations in such bursty time series can be understood not only by heterogeneous interevent times (IETs) but also by correlations between IETs. Modeling and simulating various dynamical processes requires us to generate event sequences with a heavy-tailed IET distribution and memory effects between IETs. For this, we propose a Farlie-Gumbel-Morgenstern copula-based algorithm for generating event sequences with correlated IETs when the IET distribution and the memory coefficient between two consecutive IETs are given. We successfully apply our algorithm to the cases with heavy-tailed IET distributions. We also compare our algorithm to the existing shuffling method to find that our algorithm outperforms the shuffling method for some cases. Our copula-based algorithm is expected to be used for more realistic modeling of various dynamical processes.
The concept of temporal networks provides a framework to understand how the interaction between system components changes over time. In empirical communication data, we often detect non-Poissonian, so-called bursty behavior in the activity of nodes as well as in the interaction between nodes. However, such reconciliation between node burstiness and link burstiness cannot be explained if the interaction processes on different links are independent of each other. This is because the activity of a node is the superposition of the interaction processes on the links incident to the node and the superposition of independent bursty point processes is not bursty in general. Here we introduce a temporal network model based on bursty node activation and show that it leads to heavy-tailed inter-event time distributions for both node dynamics and link dynamics. Our analysis indicates that activation processes intrinsic to nodes give rise to dynamical correlations across links. Our framework offers a way to model competition and correlation between links, which is key to understanding dynamical processes in various systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.