A psychrophilic bacterium, Cytophaga sp. strain KUC-1, that abundantly produces a NAD ؉ -dependent L-threonine dehydrogenase was isolated from Antarctic seawater, and the enzyme was purified. The molecular weight of the enzyme was estimated to be 139,000, and that of the subunit was determined to be 35,000. The enzyme is a homotetramer. Atomic absorption analysis showed that the enzyme contains no metals. In these respects, the Cytophaga enzyme is distinct from other L-threonine dehydrogenases that have thus far been studied. L-Threonine and DL-threo-3-hydroxynorvaline were the substrates, and NAD ؉ and some of its analogs served as coenzymes. The enzyme showed maximum activity at pH 9.5 and at 45°C. The kinetic parameters of the enzyme are highly influenced by temperatures. The K m for L-threonine was lowest at 20°C. Dead-end inhibition studies with pyruvate and adenosine-5-diphosphoribose showed that the enzyme reaction proceeds via the ordered Bi Bi mechanism in which NAD ؉ binds to an enzyme prior to L-threonine and 2-amino-3-oxobutyrate is released from the enzyme prior to NADH. The enzyme gene was cloned into Escherichia coli, and its nucleotides were sequenced. The enzyme gene contains an open reading frame of 939 bp encoding a protein of 312 amino acid residues. The amino acid sequence of the enzyme showed a significant similarity to that of UDP-glucose 4-epimerase from Staphylococcus aureus and belongs to the short-chain dehydrogenase-reductase superfamily. In contrast, L-threonine dehydrogenase from E. coli belongs to the medium-chain alcohol dehydrogenase family, and its amino acid sequence is not at all similar to that of the Cytophaga enzyme. L-Threonine dehydrogenase is significantly similar to an epimerase, which was shown for the first time. The amino acid residues playing an important role in the catalysis of the E. coli and human UDP-glucose 4-epimerases are highly conserved in the Cytophaga enzyme, except for the residues participating in the substrate binding.Various psychrophilic and psychrotrophic microorganisms widely occur in natural and artificial environments, such as in cold rooms and refrigerated transport systems. They take part in the natural turnover of a variety of organic and inorganic compounds under cold conditions (13). In addition to L-threonine dehydratase and L-threonine aldolase, which are pyridoxal enzymes, L-threonine dehydrogenase (L-ThrDH; EC 1.1.1.103) plays an important role in L-threonine catabolism.L-ThrDH catalyzes the NAD-dependent dehydrogenation of L-threonine to L-2-amino-3-oxobutyrate, which spontaneously decomposes to aminoacetone and CO 2 (15) or is cleaved thiolytically by 2-amino-3-oxobutyrate coenzyme A lyase to glycine and acetyl coenzyme A (14). D-ThrDH exclusively catalyzes an analogous reaction with D-threonine (16). The dehydrogenation catalyzed by L-ThrDH occurs at the -position of L-threonine, although other amino acid dehydrogenases (3,8,(18)(19)(20) catalyze the ␣-deamination reactions. L-ThrDH is regarded as a kind of alcohol dehydrogenase in ...
An NAD(+)-dependent alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1 was purified to homogeneity with an overall yield of about 20% and characterized enzymologically. The enzyme has an apparent molecular weight of 160k and consists of four identical subunits with a molecular weight of 40k. The pI value of the enzyme and its optimum pH for the oxidation reaction were determined to be 6.7 and 7.0, respectively. The enzyme contains 2 gram-atoms Zn per subunit. The enzyme exclusively requires NAD(+) as a coenzyme and shows the pro-R stereospecificity for hydrogen transfer at the C4 position of the nicotinamide moiety of NAD(+). F. frigidimaris KUC-1 alcohol dehydrogenase shows as high thermal stability as the enzymes from thermophilic microorganisms. The enzyme is active at 0 to over 85 degrees C and the most active at 70 degrees C. The half-life time and k (cat) value at 60 degrees C were calculated to be 50 min and 27,400 min(-1), respectively. The enzyme also shows high catalytic efficiency at low temperatures (0-20 degrees C) (k(cat)/K(m) at 10 degrees C; 12,600 mM(-1)min(-1)) similar to other cold-active enzymes from psychrophiles. The alcohol dehydrogenase gene is composed of 1,035 bp and codes 344 amino acid residues with an estimated molecular weight of 36,823. The sequence identities were found with the amino acid sequences of alcohol dehydrogenases from Moraxella sp. TAE123 (67%), Pseudomonas aeruginosa (65%) and Geobacillus stearothermophilus LLD-R (56%). This is the first example of a cold-active and thermostable alcohol dehydrogenase.
We found that a psychrophilic bacterium isolated from Antarctic seawater, Cytophaga sp. KUC-1, abundantly produces aspartase [EC4.3.1.1], and the enzyme was purified to homogeneity. The molecular weight of the enzyme was estimated to be 192,000, and that of the subunit was determined to be 51,000: the enzyme is a homotetramer. L-Aspartate was the exclusive substrate. The optimum pH in the absence and presence of magnesium ions was determined to be pH 7.5 and 8.5, respectively. The enzyme was activated cooperatively by the presence of L-aspartate and by magnesium ions at neutral and alkaline pHs. In the deamination reaction, the K(m) value for L-aspartate was 1.09 mM at pH 7.0, and the S(1/2) value was 2.13 mM at pH 8.5. The V(max) value were 99.2 U/mg at pH 7.0 and 326 U/mg at pH 8.5. In the amination reaction, the K(m) values for fumarate and ammonium were 0.797 and 25.2 mM, respectively, and V(max) was 604 U/mg. The optimum temperature of the enzyme was 55 degrees C. The enzyme showed higher pH and thermal stabilities than that from mesophile: the enzyme was stable in the pH range of 4.5-10.5, and about 80% of its activity remained after incubation at 50 degrees C for 60 min. The gene encoding the enzyme was cloned into Escherichia coli, and its nucleotides were sequenced. The gene consisted of an open reading frame of 1,410-bp encoding a protein of 469 amino acid residues. The amino acid sequence of the enzyme showed a high degree of identity to those of other aspartases, although these enzymes show different thermostabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.