The slanted-edge method specified in ISO Standard 12233, which measures the modulation transfer function (MTF) by analyzing an image of a slightly slanted knife-edge target, is not robust against noise because it takes the derivative of each data line in the edge-angle estimation. We propose here a modified method that estimates the edge angle by fitting a two-dimensional function to the image data. The method has a higher accuracy, precision, and robustness against noise than the ISO 12233 method and is applicable to any arbitrary pixel array, enabling a multidirectional MTF estimate in a single measurement of a starburst image.
We have developed an integral three-dimensional (3-D) television that uses a 2000-scanning-line video system that can shoot and display 3-D color moving images in real time. We had previously developed an integral 3-D television that used a high-definition television system. The new system uses -6 times as many elemental images [160 (horizontal) x 118 (vertical) elemental images] arranged at -1.5 times the density to improve further the picture quality of the reconstructed image. Through comparison an image near the lens array can be reconstructed at -1.9 times the spatial frequency, and the viewing angle is -1.5 times as wide.
Integral three-dimensional (3D) television based on integral imaging requires huge amounts of information. Previously, we constructed an Integral 3D television using Super Hi-Vision (SHV) technology, with 7680 pixels horizontally and 4320 pixels vertically. We report on improved image quality through the development of video system with an equivalent of 8000 scan lines for use with Integral 3D television. We conducted experiments to evaluate the resolution of 3D images using an experimental setup and were able to show that by using the pixel-offset method we have eliminated aliasing produced by full-resolution SHV video equipment. We confirmed that the application of the pixel-offset method to integral 3D television is effective in increasing the resolution of reconstructed images.
To realize next-generation highly realistic sensation broadcasting systems, the research and development of 8K ultrahigh-definition television (UHDTV) systems have been promoted. To realize 8K video cameras, 33Mpixel sensors [1-2] and a full-resolution camera system that uses three 33Mpixel sensors [3] have been reported. However, the weight of the camera with three sensors is over 40kg because the camera requires a large-format color-separation prism. To reduce the size of the camera, single-chip imaging is a promising approach, and a compact single-chip 8K camera that weighs only 2kg has already been developed using a color 33Mpixel CMOS image sensor [4]. However, a conventional single-chip camera has a lower image quality than a full-resolution camera because the total pixel count of the single-sensor camera is only one-third of that of the three-sensor camera, and pixel interpolation is required to configure a full-resolution image. In this paper, a 133Mpixel sensor that can be operated at 60fps to realize a full-resolution 8K single-chip camera is described. To achieve both high speed and suitable ADC resolution, 32-column multiplexing analog readout circuitry and 14b high-speed redundant successive approximation register (SAR) ADCs [5] are adopted. As a result, a full-size image with a data rate of 128.71Gb/s at 60fps has been captured. Figure 6.2.1 shows the sensor block diagram. The total pixel array size is 15488(H) × 8776(V) including optical black pixels. The pixel design is a 2.45μm two-way vertically shared pinned photodiode. The readout of the array is addressed one physical pixel row at a time with 15,488 readout columns split between the top and bottom of the pixel array. The column readout circuit consists of a source-follower bias current (VLN), a programmable-gain amplifier (PGA), and two sets of sample-and-hold capacitor banks (SHCaps) for even-and-odd-row ping-pong operation. Analog data stored in the SHCaps are read out in parallel by 484 SAR-ADCs. Each SAR-ADC serially multiplexes 32 columns, and the resulting converter data are written into the SRAM line memory. Two banks of SRAM memory are used to provide pipelining of the ADC and SRAM readout to reduce the row time. The SRAM readout is further divided into 16 parallel ports to reduce the data rate. Each readout port outputs 960 columns, with the exception of the 4 edge corner ports that output an additional 32 optical black columns. CML output drivers are used to output 7b-wide data to a 574.56MHz DDR, achieving an aggregate data rate of 128.71Gb/s. The sensor block diagram is completed with distributed PLLs, SPI communication, and on-chip timing control logic. Figure 6.2.2 shows a simplified block diagram of the signal readout path and timing control logic blocks. The PGA, SHCaps, CMR, and ADC are similar to those described in [5], which enables us to design a large-format sensor at 60fps that fits into a 1D stitching reticle. Front-end multiplexing of the columns is optimized for 32 columns per CMR and a 14b SAR-ADC with a conversion r...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.