In this paper, we evaluate the effectiveness of a semantic smoothing technique to organize folksonomy tags. Folksonomy tags have no explicit relations and vary because they form uncontrolled vocabulary. We discriminates so-called subjective tags like "cool" and "fun" from folksonomy tags without any extra knowledge other than folksonomy triples and use the level of tag generalization to form the objective tags into a hierarchy. We verify that entropy of folksonomy tags is an effective measure for discriminating subjective folksonomy tags. Our hierarchical tag allocation method guarantees the number of children nodes and increases the number of available paths to a target node compared to an existing tree allocation method for folksonomy tags.
For deep learning applications, the massive data development (e.g., collecting, labeling), which is an essential process in building practical applications, still incurs seriously high costs. In this work, we propose an effective data augmentation method based on generative adversarial networks (GANs), called Domain Fusion. Our key idea is to import the knowledge contained in an outer dataset to a target model by using a multi-domain learning GAN. The multi-domain learning GAN simultaneously learns the outer and target dataset and generates new samples for the target tasks. The simultaneous learning process makes GANs generate the target samples with high fidelity and variety. As a result, we can obtain accurate models for the target tasks by using these generated samples even if we only have an extremely low volume target dataset. We experimentally evaluate the advantages of Domain Fusion in image classification tasks on 3 target datasets: CIFAR-100, FGVC-Aircraft, and Indoor Scene Recognition. When trained on each target dataset reduced the samples to 5,000 images, Domain Fusion achieves better classification accuracy than the data augmentation using fine-tuned GANs. Furthermore, we show that Domain Fusion improves the quality of generated samples, and the improvements can contribute to higher accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.