For more than three decades the catalytic synthesis of acrylates from the cheap and abundantly available C(1) building block carbon dioxide and alkenes has been an unsolved problem in catalysis research, both in academia and industry. Herein, we describe a homogeneous catalyst based on nickel that permits the catalytic synthesis of the industrially highly relevant acrylate sodium acrylate from CO(2), ethylene, and a base, as demonstrated, at this stage, by a turnover number of greater than 10 with respect to the metal.
We report the first catalyst based on palladium for the reaction of CO2, alkene and a base to form sodium acrylate and derivatives. A mechanism similar to a previously reported Ni(0)-catalyst is proposed based on stoichiometric in situ NMR experiments, isolated intermediates and a parent palladalactone. Our palladium catalyst was applied to the coupling of CO2 with conjugated alkenes.
A set of heterogenized olefin-metathesis catalysts, which consisted of Ru complexes with the H(2)ITap ligand (1,3-bis(2',6'-dimethyl-4'dimethyl aminophenyl)-4,5-dihydroimidazol-2-ylidene) that had been adsorbed onto a silica support, has been prepared. These complexes showed strong binding to the solid support without the need for tethering groups on the complex or functionalized silica. The catalysts were tested in the ring-opening-ring-closing-metathesis (RO-RCM) of cyclooctene (COE) and the self-metathesis of methyl oleate under continuous-flow conditions. The best complexes showed a TON>4000, which surpasses the previously reported materials that were either based on the Grubbs-Hoveyda II complex on silica or on the classical heterogeneous Re(2)O(7)/B(2)O(3) catalyst.
Utilization of palladium catalysts bearing a P-chiral phosphine-sulfonate ligand enabled asymmetric copolymerization of vinyl acetate with carbon monoxide. The obtained γ-polyketones have head-to-tail and isotactic polymer structures. The origin of the regio- and stereoregularities was elucidated by stoichiometric reactions of acylpalladium complexes with vinyl acetate. The present report for the first time demonstrates successful asymmetric coordination-insertion (co)polymerization of vinyl acetate.
Palladium/phosphine-sulfonate complexes were effective for the alternating copolymerization of vinylarenes with carbon monoxide (CO). The obtained copolymers had iso-enriched microstructures with ll selectivity of up to circa 60%. The catalytic system was successfully applied to the terpolymerization of vinylarene and polar vinyl monomers with CO to produce novel terpolymers, which could not be obtained by using previously developed catalysts. NMR and DSC analyses suggested that vinylarene/CO units and polar vinyl monomer/CO units were randomly distributed in the terpolymer main chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.